ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k20_task7_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7177
- Qwk: 0.4374
- Mse: 0.7177
- Rmse: 0.8472
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0196 | 2 | 2.4770 | -0.0958 | 2.4770 | 1.5739 |
No log | 0.0392 | 4 | 1.2177 | 0.0987 | 1.2177 | 1.1035 |
No log | 0.0588 | 6 | 0.8649 | 0.0093 | 0.8649 | 0.9300 |
No log | 0.0784 | 8 | 1.3316 | -0.2458 | 1.3316 | 1.1540 |
No log | 0.0980 | 10 | 1.5396 | -0.3293 | 1.5396 | 1.2408 |
No log | 0.1176 | 12 | 1.2626 | -0.2621 | 1.2626 | 1.1237 |
No log | 0.1373 | 14 | 1.1321 | -0.0137 | 1.1321 | 1.0640 |
No log | 0.1569 | 16 | 1.0655 | 0.0022 | 1.0655 | 1.0322 |
No log | 0.1765 | 18 | 0.8777 | 0.2085 | 0.8777 | 0.9369 |
No log | 0.1961 | 20 | 0.8359 | 0.0 | 0.8359 | 0.9143 |
No log | 0.2157 | 22 | 0.8337 | 0.0 | 0.8337 | 0.9131 |
No log | 0.2353 | 24 | 0.8083 | 0.0840 | 0.8083 | 0.8991 |
No log | 0.2549 | 26 | 0.8152 | 0.1007 | 0.8152 | 0.9029 |
No log | 0.2745 | 28 | 0.8593 | 0.1918 | 0.8593 | 0.9270 |
No log | 0.2941 | 30 | 0.8833 | 0.2227 | 0.8833 | 0.9398 |
No log | 0.3137 | 32 | 0.8948 | 0.2285 | 0.8948 | 0.9460 |
No log | 0.3333 | 34 | 0.9315 | 0.1815 | 0.9315 | 0.9651 |
No log | 0.3529 | 36 | 0.9183 | 0.1598 | 0.9183 | 0.9583 |
No log | 0.3725 | 38 | 0.9245 | 0.1268 | 0.9245 | 0.9615 |
No log | 0.3922 | 40 | 0.9280 | 0.1598 | 0.9280 | 0.9633 |
No log | 0.4118 | 42 | 0.8951 | 0.0966 | 0.8951 | 0.9461 |
No log | 0.4314 | 44 | 0.8414 | 0.0 | 0.8414 | 0.9173 |
No log | 0.4510 | 46 | 0.7967 | 0.0884 | 0.7967 | 0.8926 |
No log | 0.4706 | 48 | 0.8014 | 0.0884 | 0.8014 | 0.8952 |
No log | 0.4902 | 50 | 0.8123 | 0.1456 | 0.8123 | 0.9013 |
No log | 0.5098 | 52 | 0.8333 | 0.1648 | 0.8333 | 0.9128 |
No log | 0.5294 | 54 | 0.8488 | 0.1972 | 0.8488 | 0.9213 |
No log | 0.5490 | 56 | 0.8530 | 0.1972 | 0.8530 | 0.9236 |
No log | 0.5686 | 58 | 0.8619 | 0.1699 | 0.8619 | 0.9284 |
No log | 0.5882 | 60 | 0.8535 | -0.0079 | 0.8535 | 0.9239 |
No log | 0.6078 | 62 | 0.8665 | 0.0393 | 0.8665 | 0.9309 |
No log | 0.6275 | 64 | 0.9096 | -0.0533 | 0.9096 | 0.9537 |
No log | 0.6471 | 66 | 0.9608 | 0.0888 | 0.9608 | 0.9802 |
No log | 0.6667 | 68 | 1.0911 | 0.0927 | 1.0911 | 1.0446 |
No log | 0.6863 | 70 | 1.2631 | -0.0116 | 1.2631 | 1.1239 |
No log | 0.7059 | 72 | 1.3504 | -0.0448 | 1.3504 | 1.1621 |
No log | 0.7255 | 74 | 1.4468 | -0.0763 | 1.4468 | 1.2028 |
No log | 0.7451 | 76 | 1.4721 | -0.0290 | 1.4721 | 1.2133 |
No log | 0.7647 | 78 | 1.3514 | -0.1022 | 1.3514 | 1.1625 |
No log | 0.7843 | 80 | 1.3155 | -0.1341 | 1.3155 | 1.1470 |
No log | 0.8039 | 82 | 1.3551 | -0.0471 | 1.3551 | 1.1641 |
No log | 0.8235 | 84 | 1.5271 | -0.0082 | 1.5271 | 1.2357 |
No log | 0.8431 | 86 | 1.4055 | 0.0497 | 1.4055 | 1.1855 |
No log | 0.8627 | 88 | 1.1826 | 0.0313 | 1.1826 | 1.0875 |
No log | 0.8824 | 90 | 1.1213 | 0.0715 | 1.1213 | 1.0589 |
No log | 0.9020 | 92 | 1.3077 | 0.0072 | 1.3077 | 1.1436 |
No log | 0.9216 | 94 | 1.4459 | 0.0175 | 1.4459 | 1.2025 |
No log | 0.9412 | 96 | 1.2240 | 0.0686 | 1.2240 | 1.1063 |
No log | 0.9608 | 98 | 1.1636 | 0.0462 | 1.1636 | 1.0787 |
No log | 0.9804 | 100 | 1.2054 | 0.0952 | 1.2054 | 1.0979 |
No log | 1.0 | 102 | 1.0435 | 0.1584 | 1.0435 | 1.0215 |
No log | 1.0196 | 104 | 1.0156 | 0.1328 | 1.0156 | 1.0078 |
No log | 1.0392 | 106 | 1.1113 | 0.2239 | 1.1113 | 1.0542 |
No log | 1.0588 | 108 | 1.2603 | 0.1290 | 1.2603 | 1.1227 |
No log | 1.0784 | 110 | 1.2544 | 0.1290 | 1.2544 | 1.1200 |
No log | 1.0980 | 112 | 1.0491 | 0.1144 | 1.0491 | 1.0242 |
No log | 1.1176 | 114 | 1.0007 | 0.1575 | 1.0007 | 1.0004 |
No log | 1.1373 | 116 | 1.0641 | 0.1723 | 1.0641 | 1.0316 |
No log | 1.1569 | 118 | 1.2206 | 0.1290 | 1.2206 | 1.1048 |
No log | 1.1765 | 120 | 1.1764 | 0.1352 | 1.1764 | 1.0846 |
No log | 1.1961 | 122 | 1.1439 | 0.2278 | 1.1439 | 1.0695 |
No log | 1.2157 | 124 | 0.9554 | 0.3069 | 0.9554 | 0.9775 |
No log | 1.2353 | 126 | 0.9037 | 0.2027 | 0.9037 | 0.9506 |
No log | 1.2549 | 128 | 0.8909 | 0.2371 | 0.8909 | 0.9439 |
No log | 1.2745 | 130 | 0.9088 | 0.2547 | 0.9088 | 0.9533 |
No log | 1.2941 | 132 | 1.1190 | 0.1699 | 1.1190 | 1.0578 |
No log | 1.3137 | 134 | 1.1373 | 0.1662 | 1.1373 | 1.0664 |
No log | 1.3333 | 136 | 1.0225 | 0.2389 | 1.0225 | 1.0112 |
No log | 1.3529 | 138 | 1.0446 | 0.2343 | 1.0446 | 1.0221 |
No log | 1.3725 | 140 | 1.0241 | 0.2728 | 1.0241 | 1.0120 |
No log | 1.3922 | 142 | 0.9779 | 0.2807 | 0.9779 | 0.9889 |
No log | 1.4118 | 144 | 0.9881 | 0.2590 | 0.9881 | 0.9941 |
No log | 1.4314 | 146 | 1.0386 | 0.2779 | 1.0386 | 1.0191 |
No log | 1.4510 | 148 | 1.0053 | 0.2779 | 1.0053 | 1.0026 |
No log | 1.4706 | 150 | 0.9975 | 0.3068 | 0.9975 | 0.9988 |
No log | 1.4902 | 152 | 0.9236 | 0.2643 | 0.9236 | 0.9610 |
No log | 1.5098 | 154 | 0.8880 | 0.2866 | 0.8880 | 0.9424 |
No log | 1.5294 | 156 | 0.9131 | 0.3069 | 0.9131 | 0.9556 |
No log | 1.5490 | 158 | 1.0051 | 0.2059 | 1.0051 | 1.0026 |
No log | 1.5686 | 160 | 1.0526 | 0.2234 | 1.0526 | 1.0260 |
No log | 1.5882 | 162 | 0.8889 | 0.3384 | 0.8889 | 0.9428 |
No log | 1.6078 | 164 | 0.8683 | 0.2713 | 0.8683 | 0.9318 |
No log | 1.6275 | 166 | 0.8475 | 0.2429 | 0.8475 | 0.9206 |
No log | 1.6471 | 168 | 0.9982 | 0.2389 | 0.9982 | 0.9991 |
No log | 1.6667 | 170 | 1.3522 | 0.2029 | 1.3522 | 1.1628 |
No log | 1.6863 | 172 | 1.3172 | 0.2142 | 1.3172 | 1.1477 |
No log | 1.7059 | 174 | 1.0376 | 0.2278 | 1.0376 | 1.0186 |
No log | 1.7255 | 176 | 0.8207 | 0.2749 | 0.8207 | 0.9059 |
No log | 1.7451 | 178 | 0.9438 | 0.1964 | 0.9438 | 0.9715 |
No log | 1.7647 | 180 | 1.0516 | 0.2005 | 1.0516 | 1.0255 |
No log | 1.7843 | 182 | 0.8879 | 0.3378 | 0.8879 | 0.9423 |
No log | 1.8039 | 184 | 0.8620 | 0.2808 | 0.8620 | 0.9284 |
No log | 1.8235 | 186 | 1.0067 | 0.2239 | 1.0067 | 1.0034 |
No log | 1.8431 | 188 | 0.9989 | 0.2287 | 0.9989 | 0.9994 |
No log | 1.8627 | 190 | 0.9348 | 0.2321 | 0.9348 | 0.9669 |
No log | 1.8824 | 192 | 0.9065 | 0.2778 | 0.9065 | 0.9521 |
No log | 1.9020 | 194 | 0.8834 | 0.2212 | 0.8834 | 0.9399 |
No log | 1.9216 | 196 | 0.8554 | 0.2078 | 0.8554 | 0.9249 |
No log | 1.9412 | 198 | 0.8441 | 0.2853 | 0.8441 | 0.9188 |
No log | 1.9608 | 200 | 0.8541 | 0.3548 | 0.8541 | 0.9242 |
No log | 1.9804 | 202 | 0.8625 | 0.3548 | 0.8625 | 0.9287 |
No log | 2.0 | 204 | 0.8806 | 0.3305 | 0.8806 | 0.9384 |
No log | 2.0196 | 206 | 0.8409 | 0.4176 | 0.8409 | 0.9170 |
No log | 2.0392 | 208 | 0.8288 | 0.3712 | 0.8288 | 0.9104 |
No log | 2.0588 | 210 | 0.8369 | 0.4290 | 0.8369 | 0.9148 |
No log | 2.0784 | 212 | 0.8551 | 0.3723 | 0.8551 | 0.9247 |
No log | 2.0980 | 214 | 0.8090 | 0.4125 | 0.8090 | 0.8994 |
No log | 2.1176 | 216 | 0.7844 | 0.3861 | 0.7844 | 0.8857 |
No log | 2.1373 | 218 | 0.7861 | 0.3209 | 0.7861 | 0.8866 |
No log | 2.1569 | 220 | 0.8148 | 0.3234 | 0.8148 | 0.9027 |
No log | 2.1765 | 222 | 0.7623 | 0.2722 | 0.7623 | 0.8731 |
No log | 2.1961 | 224 | 0.7671 | 0.2722 | 0.7671 | 0.8759 |
No log | 2.2157 | 226 | 0.7784 | 0.2045 | 0.7784 | 0.8823 |
No log | 2.2353 | 228 | 0.8360 | 0.2781 | 0.8360 | 0.9143 |
No log | 2.2549 | 230 | 0.9640 | 0.2892 | 0.9640 | 0.9819 |
No log | 2.2745 | 232 | 0.9478 | 0.2516 | 0.9478 | 0.9735 |
No log | 2.2941 | 234 | 0.8665 | 0.3417 | 0.8665 | 0.9308 |
No log | 2.3137 | 236 | 0.8709 | 0.3028 | 0.8709 | 0.9332 |
No log | 2.3333 | 238 | 0.8702 | 0.1876 | 0.8702 | 0.9328 |
No log | 2.3529 | 240 | 0.8646 | 0.1890 | 0.8646 | 0.9299 |
No log | 2.3725 | 242 | 0.8321 | 0.3042 | 0.8321 | 0.9122 |
No log | 2.3922 | 244 | 0.8702 | 0.3287 | 0.8702 | 0.9329 |
No log | 2.4118 | 246 | 0.9293 | 0.2784 | 0.9293 | 0.9640 |
No log | 2.4314 | 248 | 0.9061 | 0.2843 | 0.9061 | 0.9519 |
No log | 2.4510 | 250 | 0.8223 | 0.2843 | 0.8223 | 0.9068 |
No log | 2.4706 | 252 | 0.8012 | 0.2310 | 0.8012 | 0.8951 |
No log | 2.4902 | 254 | 0.7756 | 0.2508 | 0.7756 | 0.8807 |
No log | 2.5098 | 256 | 0.7760 | 0.3569 | 0.7760 | 0.8809 |
No log | 2.5294 | 258 | 0.7821 | 0.4281 | 0.7821 | 0.8844 |
No log | 2.5490 | 260 | 0.7634 | 0.3953 | 0.7634 | 0.8737 |
No log | 2.5686 | 262 | 0.7667 | 0.4523 | 0.7667 | 0.8756 |
No log | 2.5882 | 264 | 0.7876 | 0.4186 | 0.7876 | 0.8874 |
No log | 2.6078 | 266 | 0.7761 | 0.4186 | 0.7761 | 0.8810 |
No log | 2.6275 | 268 | 0.7346 | 0.3927 | 0.7346 | 0.8571 |
No log | 2.6471 | 270 | 0.7728 | 0.3247 | 0.7728 | 0.8791 |
No log | 2.6667 | 272 | 0.7790 | 0.2634 | 0.7790 | 0.8826 |
No log | 2.6863 | 274 | 0.7839 | 0.3433 | 0.7839 | 0.8854 |
No log | 2.7059 | 276 | 0.7963 | 0.4288 | 0.7963 | 0.8924 |
No log | 2.7255 | 278 | 0.8376 | 0.3656 | 0.8376 | 0.9152 |
No log | 2.7451 | 280 | 0.8414 | 0.3417 | 0.8414 | 0.9173 |
No log | 2.7647 | 282 | 0.8456 | 0.2579 | 0.8456 | 0.9196 |
No log | 2.7843 | 284 | 0.8518 | 0.3417 | 0.8518 | 0.9229 |
No log | 2.8039 | 286 | 0.8975 | 0.2696 | 0.8975 | 0.9474 |
No log | 2.8235 | 288 | 1.0304 | 0.2881 | 1.0304 | 1.0151 |
No log | 2.8431 | 290 | 1.1518 | 0.2613 | 1.1518 | 1.0732 |
No log | 2.8627 | 292 | 1.0844 | 0.2460 | 1.0844 | 1.0413 |
No log | 2.8824 | 294 | 0.8658 | 0.2521 | 0.8658 | 0.9305 |
No log | 2.9020 | 296 | 0.8006 | 0.1379 | 0.8006 | 0.8948 |
No log | 2.9216 | 298 | 0.9499 | 0.2411 | 0.9499 | 0.9746 |
No log | 2.9412 | 300 | 0.9169 | 0.2154 | 0.9169 | 0.9576 |
No log | 2.9608 | 302 | 0.7644 | 0.2568 | 0.7644 | 0.8743 |
No log | 2.9804 | 304 | 0.8258 | 0.3060 | 0.8258 | 0.9087 |
No log | 3.0 | 306 | 1.1264 | 0.3367 | 1.1264 | 1.0613 |
No log | 3.0196 | 308 | 1.2175 | 0.2404 | 1.2175 | 1.1034 |
No log | 3.0392 | 310 | 1.1246 | 0.3154 | 1.1246 | 1.0605 |
No log | 3.0588 | 312 | 0.9906 | 0.2303 | 0.9906 | 0.9953 |
No log | 3.0784 | 314 | 0.8106 | 0.3656 | 0.8106 | 0.9003 |
No log | 3.0980 | 316 | 0.7653 | 0.4157 | 0.7653 | 0.8748 |
No log | 3.1176 | 318 | 0.8024 | 0.3768 | 0.8024 | 0.8958 |
No log | 3.1373 | 320 | 0.7954 | 0.3856 | 0.7954 | 0.8918 |
No log | 3.1569 | 322 | 0.7800 | 0.4733 | 0.7800 | 0.8832 |
No log | 3.1765 | 324 | 0.8377 | 0.3526 | 0.8377 | 0.9153 |
No log | 3.1961 | 326 | 0.9222 | 0.3012 | 0.9222 | 0.9603 |
No log | 3.2157 | 328 | 0.9342 | 0.3159 | 0.9342 | 0.9665 |
No log | 3.2353 | 330 | 0.8435 | 0.3159 | 0.8435 | 0.9184 |
No log | 3.2549 | 332 | 0.7521 | 0.3088 | 0.7521 | 0.8673 |
No log | 3.2745 | 334 | 0.7562 | 0.1447 | 0.7562 | 0.8696 |
No log | 3.2941 | 336 | 0.7784 | 0.1809 | 0.7784 | 0.8823 |
No log | 3.3137 | 338 | 0.7647 | 0.2917 | 0.7647 | 0.8745 |
No log | 3.3333 | 340 | 0.7646 | 0.4059 | 0.7646 | 0.8744 |
No log | 3.3529 | 342 | 0.7916 | 0.3292 | 0.7916 | 0.8897 |
No log | 3.3725 | 344 | 0.7984 | 0.3526 | 0.7984 | 0.8935 |
No log | 3.3922 | 346 | 0.7867 | 0.3344 | 0.7867 | 0.8870 |
No log | 3.4118 | 348 | 0.7694 | 0.3261 | 0.7694 | 0.8772 |
No log | 3.4314 | 350 | 0.7600 | 0.3261 | 0.7600 | 0.8718 |
No log | 3.4510 | 352 | 0.7454 | 0.3662 | 0.7454 | 0.8634 |
No log | 3.4706 | 354 | 0.7387 | 0.3662 | 0.7387 | 0.8595 |
No log | 3.4902 | 356 | 0.7183 | 0.3425 | 0.7183 | 0.8475 |
No log | 3.5098 | 358 | 0.7245 | 0.4147 | 0.7245 | 0.8511 |
No log | 3.5294 | 360 | 0.7508 | 0.4374 | 0.7508 | 0.8665 |
No log | 3.5490 | 362 | 0.7918 | 0.3885 | 0.7918 | 0.8898 |
No log | 3.5686 | 364 | 0.8311 | 0.3780 | 0.8311 | 0.9116 |
No log | 3.5882 | 366 | 0.8859 | 0.3092 | 0.8859 | 0.9412 |
No log | 3.6078 | 368 | 0.8338 | 0.3486 | 0.8338 | 0.9131 |
No log | 3.6275 | 370 | 0.7482 | 0.4360 | 0.7482 | 0.8650 |
No log | 3.6471 | 372 | 0.7115 | 0.4568 | 0.7115 | 0.8435 |
No log | 3.6667 | 374 | 0.6952 | 0.5008 | 0.6952 | 0.8338 |
No log | 3.6863 | 376 | 0.6851 | 0.4856 | 0.6851 | 0.8277 |
No log | 3.7059 | 378 | 0.7621 | 0.3609 | 0.7621 | 0.8730 |
No log | 3.7255 | 380 | 0.8367 | 0.2832 | 0.8367 | 0.9147 |
No log | 3.7451 | 382 | 0.8494 | 0.2832 | 0.8494 | 0.9216 |
No log | 3.7647 | 384 | 0.7985 | 0.3243 | 0.7985 | 0.8936 |
No log | 3.7843 | 386 | 0.7336 | 0.4695 | 0.7336 | 0.8565 |
No log | 3.8039 | 388 | 0.7570 | 0.4038 | 0.7570 | 0.8701 |
No log | 3.8235 | 390 | 0.7505 | 0.3939 | 0.7505 | 0.8663 |
No log | 3.8431 | 392 | 0.7116 | 0.3815 | 0.7116 | 0.8436 |
No log | 3.8627 | 394 | 0.7582 | 0.3329 | 0.7582 | 0.8708 |
No log | 3.8824 | 396 | 0.8315 | 0.2975 | 0.8315 | 0.9119 |
No log | 3.9020 | 398 | 0.8426 | 0.2949 | 0.8426 | 0.9179 |
No log | 3.9216 | 400 | 0.7932 | 0.2812 | 0.7932 | 0.8906 |
No log | 3.9412 | 402 | 0.8119 | 0.3069 | 0.8119 | 0.9010 |
No log | 3.9608 | 404 | 0.8500 | 0.3582 | 0.8500 | 0.9219 |
No log | 3.9804 | 406 | 0.8137 | 0.3320 | 0.8137 | 0.9021 |
No log | 4.0 | 408 | 0.7313 | 0.3121 | 0.7313 | 0.8552 |
No log | 4.0196 | 410 | 0.6923 | 0.3769 | 0.6923 | 0.8320 |
No log | 4.0392 | 412 | 0.7137 | 0.3475 | 0.7137 | 0.8448 |
No log | 4.0588 | 414 | 0.7702 | 0.3456 | 0.7702 | 0.8776 |
No log | 4.0784 | 416 | 0.8357 | 0.3333 | 0.8357 | 0.9142 |
No log | 4.0980 | 418 | 0.6958 | 0.4350 | 0.6958 | 0.8341 |
No log | 4.1176 | 420 | 0.5968 | 0.5719 | 0.5968 | 0.7725 |
No log | 4.1373 | 422 | 0.6889 | 0.4463 | 0.6889 | 0.8300 |
No log | 4.1569 | 424 | 0.7045 | 0.4463 | 0.7045 | 0.8394 |
No log | 4.1765 | 426 | 0.6379 | 0.4575 | 0.6379 | 0.7987 |
No log | 4.1961 | 428 | 0.6616 | 0.4212 | 0.6616 | 0.8134 |
No log | 4.2157 | 430 | 0.8152 | 0.3394 | 0.8152 | 0.9029 |
No log | 4.2353 | 432 | 0.8942 | 0.3346 | 0.8942 | 0.9456 |
No log | 4.2549 | 434 | 0.8616 | 0.3433 | 0.8616 | 0.9282 |
No log | 4.2745 | 436 | 0.7795 | 0.3653 | 0.7795 | 0.8829 |
No log | 4.2941 | 438 | 0.7454 | 0.3248 | 0.7454 | 0.8634 |
No log | 4.3137 | 440 | 0.7511 | 0.2866 | 0.7511 | 0.8666 |
No log | 4.3333 | 442 | 0.7882 | 0.3305 | 0.7882 | 0.8878 |
No log | 4.3529 | 444 | 0.8241 | 0.3604 | 0.8241 | 0.9078 |
No log | 4.3725 | 446 | 0.8836 | 0.3521 | 0.8836 | 0.9400 |
No log | 4.3922 | 448 | 0.8600 | 0.3688 | 0.8600 | 0.9274 |
No log | 4.4118 | 450 | 0.8226 | 0.3934 | 0.8226 | 0.9070 |
No log | 4.4314 | 452 | 0.7327 | 0.4986 | 0.7327 | 0.8560 |
No log | 4.4510 | 454 | 0.7196 | 0.4586 | 0.7196 | 0.8483 |
No log | 4.4706 | 456 | 0.7152 | 0.4640 | 0.7152 | 0.8457 |
No log | 4.4902 | 458 | 0.7411 | 0.4986 | 0.7411 | 0.8609 |
No log | 4.5098 | 460 | 0.8372 | 0.3889 | 0.8372 | 0.9150 |
No log | 4.5294 | 462 | 0.8607 | 0.3043 | 0.8607 | 0.9278 |
No log | 4.5490 | 464 | 0.7750 | 0.4089 | 0.7750 | 0.8804 |
No log | 4.5686 | 466 | 0.6996 | 0.4524 | 0.6996 | 0.8364 |
No log | 4.5882 | 468 | 0.6887 | 0.4243 | 0.6887 | 0.8299 |
No log | 4.6078 | 470 | 0.7057 | 0.3950 | 0.7057 | 0.8400 |
No log | 4.6275 | 472 | 0.7519 | 0.3950 | 0.7519 | 0.8671 |
No log | 4.6471 | 474 | 0.8230 | 0.3630 | 0.8230 | 0.9072 |
No log | 4.6667 | 476 | 0.9843 | 0.2343 | 0.9843 | 0.9921 |
No log | 4.6863 | 478 | 1.0847 | 0.2109 | 1.0847 | 1.0415 |
No log | 4.7059 | 480 | 0.9881 | 0.3076 | 0.9881 | 0.9941 |
No log | 4.7255 | 482 | 0.9295 | 0.3497 | 0.9295 | 0.9641 |
No log | 4.7451 | 484 | 0.9202 | 0.3256 | 0.9202 | 0.9592 |
No log | 4.7647 | 486 | 0.9408 | 0.3497 | 0.9408 | 0.9700 |
No log | 4.7843 | 488 | 0.8836 | 0.2943 | 0.8836 | 0.9400 |
No log | 4.8039 | 490 | 0.9067 | 0.3356 | 0.9067 | 0.9522 |
No log | 4.8235 | 492 | 0.9129 | 0.3297 | 0.9129 | 0.9554 |
No log | 4.8431 | 494 | 0.8251 | 0.3417 | 0.8251 | 0.9083 |
No log | 4.8627 | 496 | 0.7396 | 0.4098 | 0.7396 | 0.8600 |
No log | 4.8824 | 498 | 0.7195 | 0.4236 | 0.7195 | 0.8482 |
0.4019 | 4.9020 | 500 | 0.7182 | 0.4660 | 0.7182 | 0.8475 |
0.4019 | 4.9216 | 502 | 0.7176 | 0.4328 | 0.7176 | 0.8471 |
0.4019 | 4.9412 | 504 | 0.7142 | 0.4458 | 0.7142 | 0.8451 |
0.4019 | 4.9608 | 506 | 0.7124 | 0.4638 | 0.7124 | 0.8440 |
0.4019 | 4.9804 | 508 | 0.6941 | 0.4236 | 0.6941 | 0.8331 |
0.4019 | 5.0 | 510 | 0.7177 | 0.4374 | 0.7177 | 0.8472 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for MayBashendy/ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k20_task7_organization
Base model
aubmindlab/bert-base-arabertv02