File size: 5,836 Bytes
43bc4d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from transformers import AutoModel, AutoTokenizer
import torch
import json
import requests
from PIL import Image
from torchvision import transforms
import urllib.request
from torchvision import models
import torch.nn as nn

schema ={
  "inputs": [
    {
      "name": "image",
      "type": "image",
      "description": "The image file to classify."
    },
    {
      "name": "title",
      "type": "string",
      "description": "The text title associated with the image."
    }
  ],
  "outputs": [
    {
      "name": "label",
      "type": "string",
      "description": "Predicted class label."
    },
    {
      "name": "probability",
      "type": "float",
      "description": "Prediction confidence score."
    }
  ]
}


# --- Define the Model ---
class FineGrainedClassifier(nn.Module):
    def __init__(self, num_classes=434):  # Updated to 434 classes
        super(FineGrainedClassifier, self).__init__()
        self.image_encoder = models.resnet50(pretrained=True)
        self.image_encoder.fc = nn.Identity()
        self.text_encoder = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-en')
        self.classifier = nn.Sequential(
            nn.Linear(2048 + 768, 1024),
            nn.BatchNorm1d(1024),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(1024, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(512, num_classes)  # Updated to 434 classes
        )
    
    def forward(self, image, input_ids, attention_mask):
        image_features = self.image_encoder(image)
        text_output = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask)
        text_features = text_output.last_hidden_state[:, 0, :]
        combined_features = torch.cat((image_features, text_features), dim=1)
        output = self.classifier(combined_features)
        return output

# --- Data Augmentation Setup ---
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation(15),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# # Load the label-to-class mapping from your Hugging Face repository
# label_map_url = "https://huggingface.co./Maverick98/EcommerceClassifier/resolve/main/label_to_class.json"
# label_to_class = requests.get(label_map_url).json()

# Load your custom model from Hugging Face
model = FineGrainedClassifier(num_classes=len(label_to_class))
checkpoint_url = f"https://huggingface.co./Maverick98/EcommerceClassifier/resolve/main/model_checkpoint.pth"
checkpoint = torch.hub.load_state_dict_from_url(checkpoint_url, map_location=torch.device('cpu'))

# Strip the "module." prefix from the keys in the state_dict if they exist
# Clean up the state dictionary
state_dict = checkpoint.get('model_state_dict', checkpoint)
new_state_dict = {}
for k, v in state_dict.items():
    if k.startswith("module."):
        new_key = k[7:]  # Remove "module." prefix
    else:
        new_key = k

    # Check if the new_key exists in the model's state_dict, only add if it does
    if new_key in model.state_dict():
        new_state_dict[new_key] = v

model.load_state_dict(new_state_dict)

# Load the tokenizer from Jina
tokenizer = AutoTokenizer.from_pretrained("jinaai/jina-embeddings-v2-base-en")

# def load_image(image_path_or_url):
#     if isinstance(image_path_or_url, str) and image_path_or_url.startswith("http"):
#         with urllib.request.urlopen(image_path_or_url) as url:
#             image = Image.open(url).convert('RGB')
#     else:
#         image = Image.open(image_path_or_url).convert('RGB')
    
#     image = transform(image)
#     image = image.unsqueeze(0)  # Add batch dimension
#     return image

# def predict(image_path_or_file, title, threshold=0.4):

def inference(inputs):
    image = inputs.get("image")
    title = inputs.get("title")
    if not isinstance(title, str):
        return {"error": "Title must be a string."}
    
    if not isinstance(image, (Image.Image, torch.Tensor)):
        return {"error": "Image must be a valid image file or a tensor."}
 
    threshold = 0.4
    # Validation: Check if the title is empty or has fewer than 3 words
    if not title or len(title.split()) < 3:
        raise gr.Error("Title must be at least 3 words long. Please provide a valid title.")
    
    # Preprocess the image
    image = load_image(image_path_or_file)
    
    # Tokenize title
    title_encoding = tokenizer(title, padding='max_length', max_length=200, truncation=True, return_tensors='pt')
    input_ids = title_encoding['input_ids']
    attention_mask = title_encoding['attention_mask']

    # Predict
    model.eval()
    with torch.no_grad():
        output = model(image, input_ids=input_ids, attention_mask=attention_mask)
        probabilities = torch.nn.functional.softmax(output, dim=1)
        top3_probabilities, top3_indices = torch.topk(probabilities, 3, dim=1)

    # Map indices to class names (Assuming you have a mapping)
    with open("label_to_class.json", "r") as f:
        label_to_class = json.load(f)
        
    # Map the top 3 indices to class names
    top3_classes = [label_to_class[str(idx.item())] for idx in top3_indices[0]]

    # Check if the highest probability is below the threshold
    if top3_probabilities[0][0].item() < threshold:
        top3_classes.insert(0, "Others")
        top3_probabilities = torch.cat((torch.tensor([[1.0 - top3_probabilities[0][0].item()]]), top3_probabilities), dim=1)

    # Prepare the output as a dictionary
    results = {}
    for i in range(len(top3_classes)):
        results[top3_classes[i]] = top3_probabilities[0][i].item()
    
    return results