Maverick98
commited on
Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModel, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
import json
|
4 |
+
import requests
|
5 |
+
from PIL import Image
|
6 |
+
from torchvision import transforms
|
7 |
+
import urllib.request
|
8 |
+
from torchvision import models
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
schema ={
|
12 |
+
"inputs": [
|
13 |
+
{
|
14 |
+
"name": "image",
|
15 |
+
"type": "image",
|
16 |
+
"description": "The image file to classify."
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"name": "title",
|
20 |
+
"type": "string",
|
21 |
+
"description": "The text title associated with the image."
|
22 |
+
}
|
23 |
+
],
|
24 |
+
"outputs": [
|
25 |
+
{
|
26 |
+
"name": "label",
|
27 |
+
"type": "string",
|
28 |
+
"description": "Predicted class label."
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"name": "probability",
|
32 |
+
"type": "float",
|
33 |
+
"description": "Prediction confidence score."
|
34 |
+
}
|
35 |
+
]
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
# --- Define the Model ---
|
40 |
+
class FineGrainedClassifier(nn.Module):
|
41 |
+
def __init__(self, num_classes=434): # Updated to 434 classes
|
42 |
+
super(FineGrainedClassifier, self).__init__()
|
43 |
+
self.image_encoder = models.resnet50(pretrained=True)
|
44 |
+
self.image_encoder.fc = nn.Identity()
|
45 |
+
self.text_encoder = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-en')
|
46 |
+
self.classifier = nn.Sequential(
|
47 |
+
nn.Linear(2048 + 768, 1024),
|
48 |
+
nn.BatchNorm1d(1024),
|
49 |
+
nn.ReLU(),
|
50 |
+
nn.Dropout(0.3),
|
51 |
+
nn.Linear(1024, 512),
|
52 |
+
nn.BatchNorm1d(512),
|
53 |
+
nn.ReLU(),
|
54 |
+
nn.Dropout(0.3),
|
55 |
+
nn.Linear(512, num_classes) # Updated to 434 classes
|
56 |
+
)
|
57 |
+
|
58 |
+
def forward(self, image, input_ids, attention_mask):
|
59 |
+
image_features = self.image_encoder(image)
|
60 |
+
text_output = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask)
|
61 |
+
text_features = text_output.last_hidden_state[:, 0, :]
|
62 |
+
combined_features = torch.cat((image_features, text_features), dim=1)
|
63 |
+
output = self.classifier(combined_features)
|
64 |
+
return output
|
65 |
+
|
66 |
+
# --- Data Augmentation Setup ---
|
67 |
+
transform = transforms.Compose([
|
68 |
+
transforms.Resize((224, 224)),
|
69 |
+
transforms.RandomHorizontalFlip(),
|
70 |
+
transforms.RandomRotation(15),
|
71 |
+
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2),
|
72 |
+
transforms.ToTensor(),
|
73 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
74 |
+
])
|
75 |
+
|
76 |
+
# # Load the label-to-class mapping from your Hugging Face repository
|
77 |
+
# label_map_url = "https://huggingface.co/Maverick98/EcommerceClassifier/resolve/main/label_to_class.json"
|
78 |
+
# label_to_class = requests.get(label_map_url).json()
|
79 |
+
|
80 |
+
# Load your custom model from Hugging Face
|
81 |
+
model = FineGrainedClassifier(num_classes=len(label_to_class))
|
82 |
+
checkpoint_url = f"https://huggingface.co/Maverick98/EcommerceClassifier/resolve/main/model_checkpoint.pth"
|
83 |
+
checkpoint = torch.hub.load_state_dict_from_url(checkpoint_url, map_location=torch.device('cpu'))
|
84 |
+
|
85 |
+
# Strip the "module." prefix from the keys in the state_dict if they exist
|
86 |
+
# Clean up the state dictionary
|
87 |
+
state_dict = checkpoint.get('model_state_dict', checkpoint)
|
88 |
+
new_state_dict = {}
|
89 |
+
for k, v in state_dict.items():
|
90 |
+
if k.startswith("module."):
|
91 |
+
new_key = k[7:] # Remove "module." prefix
|
92 |
+
else:
|
93 |
+
new_key = k
|
94 |
+
|
95 |
+
# Check if the new_key exists in the model's state_dict, only add if it does
|
96 |
+
if new_key in model.state_dict():
|
97 |
+
new_state_dict[new_key] = v
|
98 |
+
|
99 |
+
model.load_state_dict(new_state_dict)
|
100 |
+
|
101 |
+
# Load the tokenizer from Jina
|
102 |
+
tokenizer = AutoTokenizer.from_pretrained("jinaai/jina-embeddings-v2-base-en")
|
103 |
+
|
104 |
+
# def load_image(image_path_or_url):
|
105 |
+
# if isinstance(image_path_or_url, str) and image_path_or_url.startswith("http"):
|
106 |
+
# with urllib.request.urlopen(image_path_or_url) as url:
|
107 |
+
# image = Image.open(url).convert('RGB')
|
108 |
+
# else:
|
109 |
+
# image = Image.open(image_path_or_url).convert('RGB')
|
110 |
+
|
111 |
+
# image = transform(image)
|
112 |
+
# image = image.unsqueeze(0) # Add batch dimension
|
113 |
+
# return image
|
114 |
+
|
115 |
+
# def predict(image_path_or_file, title, threshold=0.4):
|
116 |
+
|
117 |
+
def inference(inputs):
|
118 |
+
image = inputs.get("image")
|
119 |
+
title = inputs.get("title")
|
120 |
+
if not isinstance(title, str):
|
121 |
+
return {"error": "Title must be a string."}
|
122 |
+
|
123 |
+
if not isinstance(image, (Image.Image, torch.Tensor)):
|
124 |
+
return {"error": "Image must be a valid image file or a tensor."}
|
125 |
+
|
126 |
+
threshold = 0.4
|
127 |
+
# Validation: Check if the title is empty or has fewer than 3 words
|
128 |
+
if not title or len(title.split()) < 3:
|
129 |
+
raise gr.Error("Title must be at least 3 words long. Please provide a valid title.")
|
130 |
+
|
131 |
+
# Preprocess the image
|
132 |
+
image = load_image(image_path_or_file)
|
133 |
+
|
134 |
+
# Tokenize title
|
135 |
+
title_encoding = tokenizer(title, padding='max_length', max_length=200, truncation=True, return_tensors='pt')
|
136 |
+
input_ids = title_encoding['input_ids']
|
137 |
+
attention_mask = title_encoding['attention_mask']
|
138 |
+
|
139 |
+
# Predict
|
140 |
+
model.eval()
|
141 |
+
with torch.no_grad():
|
142 |
+
output = model(image, input_ids=input_ids, attention_mask=attention_mask)
|
143 |
+
probabilities = torch.nn.functional.softmax(output, dim=1)
|
144 |
+
top3_probabilities, top3_indices = torch.topk(probabilities, 3, dim=1)
|
145 |
+
|
146 |
+
# Map indices to class names (Assuming you have a mapping)
|
147 |
+
with open("label_to_class.json", "r") as f:
|
148 |
+
label_to_class = json.load(f)
|
149 |
+
|
150 |
+
# Map the top 3 indices to class names
|
151 |
+
top3_classes = [label_to_class[str(idx.item())] for idx in top3_indices[0]]
|
152 |
+
|
153 |
+
# Check if the highest probability is below the threshold
|
154 |
+
if top3_probabilities[0][0].item() < threshold:
|
155 |
+
top3_classes.insert(0, "Others")
|
156 |
+
top3_probabilities = torch.cat((torch.tensor([[1.0 - top3_probabilities[0][0].item()]]), top3_probabilities), dim=1)
|
157 |
+
|
158 |
+
# Prepare the output as a dictionary
|
159 |
+
results = {}
|
160 |
+
for i in range(len(top3_classes)):
|
161 |
+
results[top3_classes[i]] = top3_probabilities[0][i].item()
|
162 |
+
|
163 |
+
return results
|