Edit model card

bert-base-uncased-finetuned-dob

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0005

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss
2.218 1.0 20 0.9998
0.5247 2.0 40 0.1072
0.0813 3.0 60 0.0406
0.0421 4.0 80 0.0351
0.0339 5.0 100 0.0286
0.0249 6.0 120 0.0064
0.0109 7.0 140 0.0022
0.0039 8.0 160 0.0016
0.0026 9.0 180 0.0013
0.0022 10.0 200 0.0011
0.002 11.0 220 0.0010
0.0017 12.0 240 0.0009
0.0015 13.0 260 0.0009
0.0014 14.0 280 0.0008
0.0013 15.0 300 0.0007
0.0013 16.0 320 0.0007
0.0012 17.0 340 0.0007
0.0011 18.0 360 0.0006
0.001 19.0 380 0.0006
0.001 20.0 400 0.0006
0.0009 21.0 420 0.0006
0.0009 22.0 440 0.0006
0.0009 23.0 460 0.0006
0.0009 24.0 480 0.0005
0.0008 25.0 500 0.0005
0.0008 26.0 520 0.0005
0.0008 27.0 540 0.0005
0.0008 28.0 560 0.0005
0.0008 29.0 580 0.0005
0.0008 30.0 600 0.0005

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MattiaParavisi/bert-base-uncased-finetuned-dob

Finetuned
(2091)
this model