1289.4068 seconds used for training. 21.49 minutes used for training. Peak reserved memory = 9.545 GB. Peak reserved memory for training = 4.018 GB. Peak reserved memory % of max memory = 43.058 %. Peak reserved memory for training % of max memory = 18.125 %.
args = TrainingArguments( per_device_train_batch_size = 2, gradient_accumulation_steps = 4, warmup_steps = 10, # Augmenté le nombre de steps de warmup max_steps = 200, # Augmenté le nombre total de steps learning_rate = 1e-4, # Réduit le taux d'apprentissage fp16 = not torch.cuda.is_bf16_supported(), bf16 = torch.cuda.is_bf16_supported(), logging_steps = 1, optim = "adamw_8bit", weight_decay = 0.01, lr_scheduler_type = "linear", seed = 42, output_dir = "outputs",
==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1 \ /| Num examples = 399 | Num Epochs = 4 O^O/ _/ \ Batch size per device = 2 | Gradient Accumulation steps = 4 \ / Total batch size = 8 | Total steps = 200 "-____-" Number of trainable parameters = 20,971,520 [200/200 21:17, Epoch 4/4] Step Training Loss 1 2.027900 2 2.008700 3 1.946100 4 1.924700 5 1.995000 6 1.999000 7 1.870100 8 1.891400 9 1.807600 10 1.723200 11 1.665100 12 1.541000 13 1.509100 14 1.416600 15 1.398600 16 1.233200 17 1.172100 18 1.272100 19 1.146000 20 1.179000 21 1.206400 22 1.095400 23 0.937300 24 1.214300 25 1.040200 26 1.183400 27 1.033900 28 0.953100 29 0.935700 30 0.962200 31 0.908900 32 0.924900 33 0.931000 34 1.011300 35 0.951900 36 0.936000 37 0.903000 38 0.906900 39 0.945700 40 0.827000 41 0.931800 42 0.919600 43 0.926900 44 0.932900 45 0.872700 46 0.795200 47 0.888700 48 0.956800 49 1.004200 50 0.859500 51 0.802500 52 0.855400 53 0.885500 54 1.026600 55 0.844100 56 0.879800 57 0.797400 58 0.885300 59 0.842800 60 0.861600 61 0.789100 62 0.861600 63 0.856700 64 0.929200 65 0.782500 66 0.713600 67 0.781000 68 0.765100 69 0.784700 70 0.869500 71 0.742900 72 0.787900 73 0.750800 74 0.931700 75 0.713000 76 0.832100 77 0.928300 78 0.777600 79 0.694000 80 0.835400 81 0.822000 82 0.754600 83 0.813400 84 0.868800 85 0.732400 86 0.803700 87 0.694400 88 0.771300 89 0.864400 90 0.646700 91 0.690800 92 0.695000 93 0.732300 94 0.766900 95 0.864100 96 0.867200 97 0.774300 98 0.797700 99 0.772100 100 0.906700 101 0.693400 102 0.685500 103 0.712200 104 0.678400 105 0.761900 106 0.705300 107 0.775700 108 0.627600 109 0.599300 110 0.615100 111 0.618200 112 0.668700 113 0.699900 114 0.577000 115 0.711600 116 0.692900 117 0.585400 118 0.646400 119 0.569200 120 0.752300 121 0.745000 122 0.690100 123 0.744700 124 0.665800 125 0.866100 126 0.707400 127 0.679300 128 0.591400 129 0.655100 130 0.734000 131 0.637900 132 0.733900 133 0.652500 134 0.685400 135 0.641300 136 0.608200 137 0.754100 138 0.753700 139 0.671000 140 0.767200 141 0.668700 142 0.630300 143 0.734700 144 0.767700 145 0.722200 146 0.694400 147 0.710100 148 0.696300 149 0.612600 150 0.670400 151 0.512900 152 0.675100 153 0.579900 154 0.622900 155 0.652500 156 0.649200 157 0.546700 158 0.521600 159 0.522200 160 0.589400 161 0.552600 162 0.630700 163 0.595600 164 0.614300 165 0.489400 166 0.634500 167 0.620800 168 0.618600 169 0.637900 170 0.553900 171 0.656000 172 0.644000 173 0.694300 174 0.608900 175 0.673000 176 0.612500 177 0.654200 178 0.639200 179 0.599100 180 0.642100 181 0.529700 182 0.614000 183 0.582900 184 0.765100 185 0.502700 186 0.564300 187 0.740200 188 0.636100 189 0.638800 190 0.560100 191 0.620000 192 0.712800 193 0.531000 194 0.591600 195 0.608600 196 0.671800 197 0.572900 198 0.600900 199 0.586800 200 0.545900
base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf
Uploaded model
- Developed by: Mathoufle13
- License: apache-2.0
- Finetuned from model : unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
- Downloads last month
- 14