Mistral-7B-Ours-SFT-SCDPO

This model is a fine-tuned version of MathGenie/Mistral-7B-Ours-SFT. It achieves the following results on the evaluation set:

  • Loss: 0.1793
  • Rewards/chosen: 0.2587
  • Rewards/rejected: -7.0301
  • Rewards/accuracies: 0.8947
  • Rewards/margins: 7.2889
  • Logps/rejected: -253.7773
  • Logps/chosen: -80.3105
  • Logits/rejected: -2.3417
  • Logits/chosen: -2.3846

Model description

This is a model fine-tuned for mathematical problem-solving.

Intended uses & limitations

The model is intended for solving math problems.

Training and evaluation data

eval

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-07
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.3963 0.21 100 0.3636 1.8634 -0.1518 0.8816 2.0152 -184.9944 -64.2644 -2.7112 -2.7505
0.2849 0.43 200 0.2598 0.7706 -3.7221 0.8816 4.4927 -220.6974 -75.1921 -2.5067 -2.5475
0.2496 0.64 300 0.2295 0.9323 -4.2717 0.8684 5.2040 -226.1934 -73.5753 -2.5080 -2.5494
0.2331 0.86 400 0.2089 0.7871 -4.8912 0.8684 5.6783 -232.3884 -75.0269 -2.4967 -2.5382
0.0874 1.07 500 0.1872 0.6345 -5.7444 0.8816 6.3789 -240.9202 -76.5527 -2.4323 -2.4761
0.1217 1.28 600 0.1832 0.2282 -6.6907 0.8684 6.9188 -250.3827 -80.6161 -2.3741 -2.4172
0.0966 1.5 700 0.1807 0.1849 -7.0125 0.8816 7.1975 -253.6012 -81.0485 -2.3503 -2.3940
0.0755 1.71 800 0.1802 0.3224 -6.9539 0.8947 7.2763 -253.0150 -79.6739 -2.3437 -2.3867
0.1177 1.93 900 0.1793 0.2587 -7.0301 0.8947 7.2889 -253.7773 -80.3105 -2.3417 -2.3846

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.14.6
  • Tokenizers 0.15.2
Downloads last month
28
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MathGenie/Mistral-7B-Ours-SFT-SCDPO

Finetuned
(1)
this model

Collection including MathGenie/Mistral-7B-Ours-SFT-SCDPO