|
--- |
|
language: |
|
- ko |
|
license: apache-2.0 |
|
tags: |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
base_model: openai/whisper-large |
|
datasets: |
|
- Marcusxx/gwanju |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: gwanju_largeWER_model |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Marcusxx/gwanju |
|
type: Marcusxx/gwanju |
|
args: 'config: ko, split: valid' |
|
metrics: |
|
- type: wer |
|
value: 41.85458286890166 |
|
name: Wer |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gwanju_largeWER_model |
|
|
|
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co./openai/whisper-large) on the Marcusxx/gwanju dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3334 |
|
- Wer: 41.8546 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 4000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 0.4683 | 0.0741 | 250 | 0.4884 | 104.4328 | |
|
| 0.4578 | 0.1482 | 500 | 0.4522 | 55.8304 | |
|
| 0.4675 | 0.2223 | 750 | 0.4379 | 65.3948 | |
|
| 0.4338 | 0.2964 | 1000 | 0.4225 | 65.4206 | |
|
| 0.4547 | 0.3705 | 1250 | 0.4023 | 63.5814 | |
|
| 0.3676 | 0.4446 | 1500 | 0.3914 | 47.9551 | |
|
| 0.3752 | 0.5187 | 1750 | 0.3840 | 48.3838 | |
|
| 0.3584 | 0.5928 | 2000 | 0.3745 | 44.8641 | |
|
| 0.4221 | 0.6669 | 2250 | 0.3638 | 42.4548 | |
|
| 0.3432 | 0.7410 | 2500 | 0.3563 | 42.7206 | |
|
| 0.3993 | 0.8151 | 2750 | 0.3497 | 44.7955 | |
|
| 0.3448 | 0.8892 | 3000 | 0.3437 | 43.3722 | |
|
| 0.3441 | 0.9632 | 3250 | 0.3381 | 40.4270 | |
|
| 0.2317 | 1.0373 | 3500 | 0.3350 | 39.5782 | |
|
| 0.2063 | 1.1114 | 3750 | 0.3339 | 40.8385 | |
|
| 0.2016 | 1.1855 | 4000 | 0.3334 | 41.8546 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|