SocialScienceBART / README.md
MarPla's picture
End of training
ae4f837 verified
metadata
license: mit
base_model: facebook/bart-large-cnn
tags:
  - generated_from_trainer
metrics:
  - rouge
  - bleu
model-index:
  - name: SocialScienceBART
    results: []

SocialScienceBART

This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.6504
  • Rouge1: 51.3376
  • Rouge2: 18.2656
  • Rougel: 36.0279
  • Rougelsum: 47.688
  • Bertscore Precision: 81.2268
  • Bertscore Recall: 83.5394
  • Bertscore F1: 82.3632
  • Bleu: 0.1466
  • Gen Len: 195.1837

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bertscore Precision Bertscore Recall Bertscore F1 Bleu Gen Len
6.3499 0.1314 100 5.9601 44.2626 14.89 31.4939 41.4297 78.5226 81.7375 80.0922 0.1200 195.1837
5.7616 0.2628 200 5.5234 45.0397 15.5203 31.9711 41.5206 77.988 82.1682 80.0147 0.1261 195.1837
5.3197 0.3943 300 5.2264 46.0652 15.9668 32.867 42.5272 78.4756 82.4394 80.4011 0.1308 195.1837
5.1661 0.5257 400 5.0219 45.5622 15.8452 33.3135 42.7801 79.6663 82.5824 81.0931 0.1287 195.1837
5.0513 0.6571 500 4.8896 45.2597 15.7552 33.7344 42.337 79.3705 82.7284 81.0087 0.1287 195.1837
4.8073 0.7885 600 4.7506 48.6142 17.418 35.1837 45.2098 80.4041 83.2297 81.7876 0.1409 195.1837
4.7293 0.9199 700 4.6504 51.3376 18.2656 36.0279 47.688 81.2268 83.5394 82.3632 0.1466 195.1837

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1