PhysicalScienceBART / README.md
MarPla's picture
End of training
cd03d8f verified
|
raw
history blame
4.52 kB
metadata
license: mit
base_model: facebook/bart-large-cnn
tags:
  - generated_from_trainer
metrics:
  - rouge
  - bleu
model-index:
  - name: PhysicalScienceBART
    results: []

PhysicalScienceBART

This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.2991
  • Rouge1: 53.186
  • Rouge2: 19.5939
  • Rougel: 38.452
  • Rougelsum: 49.3854
  • Bertscore Precision: 82.8832
  • Bertscore Recall: 84.3034
  • Bertscore F1: 83.5838
  • Bleu: 0.1422
  • Gen Len: 196.4045

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bertscore Precision Bertscore Recall Bertscore F1 Bleu Gen Len
6.1797 0.0620 100 5.9428 45.7148 14.7784 32.4391 42.4853 79.9576 82.0698 80.9951 0.1054 196.4045
5.7661 0.1239 200 5.5214 44.5312 15.1622 32.5105 41.2065 79.981 82.4 81.1665 0.1088 196.4045
5.2648 0.1859 300 5.2101 45.5969 15.6417 33.588 42.4324 80.1261 82.5551 81.3158 0.1119 196.4045
5.2069 0.2478 400 5.0522 49.0072 16.6961 34.477 45.2146 80.7244 83.1085 81.8929 0.1201 196.4045
4.9897 0.3098 500 4.9185 48.8492 16.7109 35.2037 45.3551 81.2776 83.2272 82.236 0.1207 196.4045
4.8413 0.3717 600 4.8053 48.7091 16.9882 35.3917 45.1652 81.4957 83.4015 82.4325 0.1226 196.4045
4.829 0.4337 700 4.6973 50.548 17.8895 36.2198 47.0729 81.8959 83.5895 82.73 0.1278 196.4045
4.6419 0.4957 800 4.6161 50.6164 18.2248 36.6206 46.8571 81.8709 83.7859 82.8123 0.1313 196.4045
4.5451 0.5576 900 4.5494 51.9353 18.3864 37.1004 48.168 82.3316 83.9031 83.1059 0.1326 196.4045
4.4911 0.6196 1000 4.4939 51.8997 18.8308 37.4581 47.9484 82.3519 83.9865 83.1569 0.1361 196.4045
4.5189 0.6815 1100 4.4391 52.0976 19.0604 37.6501 48.4561 82.5212 84.0028 83.2516 0.1365 196.4045
4.4382 0.7435 1200 4.4061 53.1857 19.3566 37.9447 49.2686 82.7376 84.2523 83.4844 0.1401 196.4045
4.4027 0.8055 1300 4.3583 52.2536 19.1902 37.9482 48.549 82.6541 84.1335 83.3833 0.1388 196.4045
4.3911 0.8674 1400 4.3376 52.243 19.139 38.0374 48.6274 82.6627 84.1627 83.4023 0.1385 196.4045
4.29 0.9294 1500 4.3162 53.3823 19.4988 38.381 49.4473 82.9505 84.3617 83.6468 0.1419 196.4045
4.3218 0.9913 1600 4.2991 53.186 19.5939 38.452 49.3854 82.8832 84.3034 83.5838 0.1422 196.4045

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1