Makkoen's picture
End of training
fea3b6b verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-medium.en
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: ./3382
    results: []

./3382

This model is a fine-tuned version of openai/whisper-medium.en on the 3382 NYC 1000 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6304
  • Wer Ortho: 32.2501
  • Wer: 23.5222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
1.5524 0.5256 100 1.0430 42.1375 33.6570
1.0535 1.0512 200 0.8779 37.1493 27.9815
0.8222 1.5769 300 0.7495 35.4208 26.5674
0.6909 2.1025 400 0.6826 33.2082 24.5121
0.5843 2.6281 500 0.6558 32.8625 24.1350
0.5347 3.1537 600 0.6436 32.4773 23.5693
0.4819 3.6794 700 0.6377 33.5243 24.4555
0.4922 4.2050 800 0.6338 31.9933 23.0980
0.4638 4.7306 900 0.6318 32.1513 23.4845
0.4362 5.2562 1000 0.6304 32.2501 23.5222

Framework versions

  • Transformers 4.44.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.21.0
  • Tokenizers 0.19.1