MUmairAB/bert-ner
The model training notebook is available on my GitHub Repo.
This model is a fine-tuned version of bert-base-cased on Cnoll2003 dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0003
- Validation Loss: 0.0880
- Epoch: 19
How to use this model
#Install the transformers library
!pip install transformers
#Import the pipeline
from transformers import pipeline
#Import the model from HuggingFace
checkpoint = "MUmairAB/bert-ner"
model = pipeline(task="token-classification",
model=checkpoint)
#Use the model
raw_text = "My name is umair and i work at Swits AI in Antarctica."
model(raw_text)
Model description
Model: "tf_bert_for_token_classification" ``` _________________________________________________________________ Layer (type) Output Shape Param #
bert (TFBertMainLayer) multiple 107719680
dropout_37 (Dropout) multiple 0
classifier (Dense) multiple 6921
Total params: 107,726,601 Trainable params: 107,726,601 Non-trainable params: 0
## Intended uses & limitations
This model can be used for named entity recognition tasks. It is trained on [Conll2003](https://huggingface.co./datasets/conll2003) dataset. The model can classify four types of named entities:
1. persons,
2. locations,
3. organizations, and
4. names of miscellaneous entities that do not belong to the previous three groups.
## Training and evaluation data
The model is evaluated on [seqeval](https://github.com/chakki-works/seqeval) metric and the result is as follows:
{'LOC': {'precision': 0.9655361050328227, 'recall': 0.9608056614044638, 'f1': 0.9631650750341064, 'number': 1837}, 'MISC': {'precision': 0.8789144050104384, 'recall': 0.913232104121475, 'f1': 0.8957446808510638, 'number': 922}, 'ORG': {'precision': 0.9075144508670521, 'recall': 0.9366144668158091, 'f1': 0.9218348623853211, 'number': 1341}, 'PER': {'precision': 0.962011771000535, 'recall': 0.9761129207383279, 'f1': 0.9690110482349771, 'number': 1842}, 'overall_precision': 0.9374068554396423, 'overall_recall': 0.9527095254123191, 'overall_f1': 0.944996244053084, 'overall_accuracy': 0.9864013657502796}
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 17560, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.1775 | 0.0635 | 0 |
| 0.0470 | 0.0559 | 1 |
| 0.0278 | 0.0603 | 2 |
| 0.0174 | 0.0603 | 3 |
| 0.0124 | 0.0615 | 4 |
| 0.0077 | 0.0722 | 5 |
| 0.0060 | 0.0731 | 6 |
| 0.0038 | 0.0757 | 7 |
| 0.0043 | 0.0731 | 8 |
| 0.0041 | 0.0735 | 9 |
| 0.0019 | 0.0724 | 10 |
| 0.0019 | 0.0786 | 11 |
| 0.0010 | 0.0843 | 12 |
| 0.0008 | 0.0814 | 13 |
| 0.0011 | 0.0867 | 14 |
| 0.0008 | 0.0883 | 15 |
| 0.0005 | 0.0861 | 16 |
| 0.0005 | 0.0869 | 17 |
| 0.0003 | 0.0880 | 18 |
| 0.0003 | 0.0880 | 19 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 35
Model tree for MUmairAB/bert-ner
Base model
google-bert/bert-base-cased