Edit model card

MADE WITH LOVE BY LIMINERITY

INEX8-7B

INEX8-7B is a merge of the following models using mergekit:

🧩 Configuration

MODEL_NAME = "merge"
slices:
  - sources:
      - model: MSL7/INEX4-7b
        layer_range: [0, 32]
      - model: yam-peleg/Experiment24-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: MSL7/INEX4-7b
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

MODEL_NAME = "merge1"
slices:
  - sources:
      - model: liminerity/merge
        layer_range: [0, 32]
      - model: CorticalStack/shadow-clown-7B-dare
        layer_range: [0, 32]
merge_method: slerp
base_model: liminerity/merge
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

MODEL_NAME = "merge2"
slices:
  - sources:
      - model: liminerity/merge1
        layer_range: [0, 32]
      - model: bardsai/jaskier-7b-dpo-v6.1
        layer_range: [0, 32]
merge_method: slerp
base_model: liminerity/merge1
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

MODEL_NAME = "merge3"
slices:
  - sources:
      - model: liminerity/merge2
        layer_range: [0, 32]
      - model: eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO
        layer_range: [0, 32]
merge_method: slerp
base_model: liminerity/merge2
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16


MODEL_NAME: "INEX8-7b"
slices:
  - sources:
      - model: liminerity/merge3
        layer_range: [0, 32]
      - model: yam-peleg/Experiment26-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: liminerity/merge3
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 76.44
AI2 Reasoning Challenge (25-Shot) 73.29
HellaSwag (10-Shot) 89.19
MMLU (5-Shot) 64.47
TruthfulQA (0-shot) 77.83
Winogrande (5-shot) 84.85
GSM8k (5-shot) 68.99
Downloads last month
80
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results