MSAMTB commited on
Commit
7641c16
·
verified ·
1 Parent(s): 88d5d1a

Training in progress, step 200

Browse files
README.md CHANGED
@@ -15,14 +15,14 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 1.6598
19
- - Answer: {'precision': 0.8569780853517878, 'recall': 0.9094247246022031, 'f1': 0.8824228028503563, 'number': 817}
20
- - Header: {'precision': 0.616822429906542, 'recall': 0.5546218487394958, 'f1': 0.5840707964601769, 'number': 119}
21
- - Question: {'precision': 0.8877917414721723, 'recall': 0.9182915506035283, 'f1': 0.9027841168416247, 'number': 1077}
22
- - Overall Precision: 0.8611
23
- - Overall Recall: 0.8932
24
- - Overall F1: 0.8769
25
- - Overall Accuracy: 0.8110
26
 
27
  ## Model description
28
 
@@ -45,7 +45,6 @@ The following hyperparameters were used during training:
45
  - train_batch_size: 8
46
  - eval_batch_size: 8
47
  - seed: 42
48
- - distributed_type: multi-GPU
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
  - training_steps: 2500
@@ -53,20 +52,20 @@ The following hyperparameters were used during training:
53
 
54
  ### Training results
55
 
56
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
- |:-------------:|:--------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
- | 0.3825 | 10.5263 | 200 | 1.0337 | {'precision': 0.8096774193548387, 'recall': 0.9216646266829865, 'f1': 0.8620492272467086, 'number': 817} | {'precision': 0.57, 'recall': 0.4789915966386555, 'f1': 0.5205479452054794, 'number': 119} | {'precision': 0.8878591288229842, 'recall': 0.8895078922934077, 'f1': 0.888682745825603, 'number': 1077} | 0.8383 | 0.8783 | 0.8578 | 0.7937 |
59
- | 0.0479 | 21.0526 | 400 | 1.2331 | {'precision': 0.8652482269503546, 'recall': 0.8959608323133414, 'f1': 0.8803367408298255, 'number': 817} | {'precision': 0.5378787878787878, 'recall': 0.5966386554621849, 'f1': 0.5657370517928287, 'number': 119} | {'precision': 0.8864042933810375, 'recall': 0.9201485608170845, 'f1': 0.9029612756264238, 'number': 1077} | 0.8559 | 0.8912 | 0.8732 | 0.8016 |
60
- | 0.0135 | 31.5789 | 600 | 1.3752 | {'precision': 0.8589894242068156, 'recall': 0.8947368421052632, 'f1': 0.8764988009592326, 'number': 817} | {'precision': 0.47305389221556887, 'recall': 0.6638655462184874, 'f1': 0.5524475524475525, 'number': 119} | {'precision': 0.8785388127853881, 'recall': 0.89322191272052, 'f1': 0.8858195211786372, 'number': 1077} | 0.8386 | 0.8803 | 0.8589 | 0.8054 |
61
- | 0.0076 | 42.1053 | 800 | 1.3688 | {'precision': 0.8801955990220048, 'recall': 0.8812729498164015, 'f1': 0.8807339449541285, 'number': 817} | {'precision': 0.5546875, 'recall': 0.5966386554621849, 'f1': 0.5748987854251012, 'number': 119} | {'precision': 0.8756567425569177, 'recall': 0.9285051067780873, 'f1': 0.9013068949977467, 'number': 1077} | 0.8578 | 0.8897 | 0.8734 | 0.8028 |
62
- | 0.003 | 52.6316 | 1000 | 1.6920 | {'precision': 0.8350398179749715, 'recall': 0.8984088127294981, 'f1': 0.8655660377358491, 'number': 817} | {'precision': 0.5354330708661418, 'recall': 0.5714285714285714, 'f1': 0.5528455284552845, 'number': 119} | {'precision': 0.8950381679389313, 'recall': 0.8709377901578459, 'f1': 0.8828235294117648, 'number': 1077} | 0.8471 | 0.8644 | 0.8557 | 0.7898 |
63
- | 0.0028 | 63.1579 | 1200 | 1.6114 | {'precision': 0.8316268486916951, 'recall': 0.8947368421052632, 'f1': 0.8620283018867924, 'number': 817} | {'precision': 0.527027027027027, 'recall': 0.6554621848739496, 'f1': 0.5842696629213482, 'number': 119} | {'precision': 0.8915094339622641, 'recall': 0.8774373259052924, 'f1': 0.8844174075807205, 'number': 1077} | 0.8404 | 0.8713 | 0.8556 | 0.7919 |
64
- | 0.0011 | 73.6842 | 1400 | 1.5815 | {'precision': 0.8320180383314544, 'recall': 0.9033047735618115, 'f1': 0.8661971830985915, 'number': 817} | {'precision': 0.5925925925925926, 'recall': 0.5378151260504201, 'f1': 0.5638766519823789, 'number': 119} | {'precision': 0.8895927601809954, 'recall': 0.9127205199628597, 'f1': 0.9010082493125573, 'number': 1077} | 0.85 | 0.8867 | 0.8680 | 0.8007 |
65
- | 0.0008 | 84.2105 | 1600 | 1.6211 | {'precision': 0.8632075471698113, 'recall': 0.8959608323133414, 'f1': 0.8792792792792793, 'number': 817} | {'precision': 0.6346153846153846, 'recall': 0.5546218487394958, 'f1': 0.5919282511210763, 'number': 119} | {'precision': 0.8871111111111111, 'recall': 0.9266480965645311, 'f1': 0.9064486830154405, 'number': 1077} | 0.8647 | 0.8922 | 0.8782 | 0.8102 |
66
- | 0.0009 | 94.7368 | 1800 | 1.5792 | {'precision': 0.8789346246973365, 'recall': 0.8886168910648715, 'f1': 0.8837492391965917, 'number': 817} | {'precision': 0.5916666666666667, 'recall': 0.5966386554621849, 'f1': 0.5941422594142259, 'number': 119} | {'precision': 0.8811188811188811, 'recall': 0.935933147632312, 'f1': 0.9076992345790185, 'number': 1077} | 0.8636 | 0.8967 | 0.8798 | 0.8261 |
67
- | 0.0005 | 105.2632 | 2000 | 1.6499 | {'precision': 0.8393665158371041, 'recall': 0.9082007343941249, 'f1': 0.8724279835390947, 'number': 817} | {'precision': 0.6036036036036037, 'recall': 0.5630252100840336, 'f1': 0.582608695652174, 'number': 119} | {'precision': 0.8933454876937101, 'recall': 0.9099350046425255, 'f1': 0.9015639374425023, 'number': 1077} | 0.8552 | 0.8887 | 0.8716 | 0.8086 |
68
- | 0.0003 | 115.7895 | 2200 | 1.6743 | {'precision': 0.849942726231386, 'recall': 0.9082007343941249, 'f1': 0.8781065088757396, 'number': 817} | {'precision': 0.6111111111111112, 'recall': 0.5546218487394958, 'f1': 0.5814977973568282, 'number': 119} | {'precision': 0.8869801084990958, 'recall': 0.9108635097493036, 'f1': 0.8987631699496106, 'number': 1077} | 0.8572 | 0.8887 | 0.8727 | 0.8077 |
69
- | 0.0002 | 126.3158 | 2400 | 1.6598 | {'precision': 0.8569780853517878, 'recall': 0.9094247246022031, 'f1': 0.8824228028503563, 'number': 817} | {'precision': 0.616822429906542, 'recall': 0.5546218487394958, 'f1': 0.5840707964601769, 'number': 119} | {'precision': 0.8877917414721723, 'recall': 0.9182915506035283, 'f1': 0.9027841168416247, 'number': 1077} | 0.8611 | 0.8932 | 0.8769 | 0.8110 |
70
 
71
 
72
  ### Framework versions
 
15
 
16
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 1.6323
19
+ - Answer: {'precision': 0.8683901292596945, 'recall': 0.9045287637698899, 'f1': 0.8860911270983215, 'number': 817}
20
+ - Header: {'precision': 0.6095238095238096, 'recall': 0.5378151260504201, 'f1': 0.5714285714285715, 'number': 119}
21
+ - Question: {'precision': 0.90063233965673, 'recall': 0.9257195914577531, 'f1': 0.913003663003663, 'number': 1077}
22
+ - Overall Precision: 0.8725
23
+ - Overall Recall: 0.8942
24
+ - Overall F1: 0.8832
25
+ - Overall Accuracy: 0.8071
26
 
27
  ## Model description
28
 
 
45
  - train_batch_size: 8
46
  - eval_batch_size: 8
47
  - seed: 42
 
48
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
  - lr_scheduler_type: linear
50
  - training_steps: 2500
 
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:--------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 0.4052 | 10.5263 | 200 | 1.0646 | {'precision': 0.8046709129511678, 'recall': 0.9277845777233782, 'f1': 0.861853325753269, 'number': 817} | {'precision': 0.5803571428571429, 'recall': 0.5462184873949579, 'f1': 0.5627705627705628, 'number': 119} | {'precision': 0.8797061524334252, 'recall': 0.8895078922934077, 'f1': 0.8845798707294553, 'number': 1077} | 0.8311 | 0.8847 | 0.8571 | 0.7850 |
58
+ | 0.0474 | 21.0526 | 400 | 1.2300 | {'precision': 0.8500590318772137, 'recall': 0.8812729498164015, 'f1': 0.8653846153846153, 'number': 817} | {'precision': 0.5454545454545454, 'recall': 0.6554621848739496, 'f1': 0.5954198473282444, 'number': 119} | {'precision': 0.8798908098271155, 'recall': 0.8978644382544104, 'f1': 0.8887867647058824, 'number': 1077} | 0.8449 | 0.8768 | 0.8606 | 0.8026 |
59
+ | 0.0127 | 31.5789 | 600 | 1.5767 | {'precision': 0.8359728506787331, 'recall': 0.9045287637698899, 'f1': 0.8689006466784246, 'number': 817} | {'precision': 0.5583333333333333, 'recall': 0.5630252100840336, 'f1': 0.5606694560669456, 'number': 119} | {'precision': 0.8940397350993378, 'recall': 0.8774373259052924, 'f1': 0.8856607310215557, 'number': 1077} | 0.8496 | 0.8698 | 0.8596 | 0.7835 |
60
+ | 0.0085 | 42.1053 | 800 | 1.3875 | {'precision': 0.833710407239819, 'recall': 0.9020807833537332, 'f1': 0.8665490887713109, 'number': 817} | {'precision': 0.6363636363636364, 'recall': 0.5294117647058824, 'f1': 0.5779816513761468, 'number': 119} | {'precision': 0.8825654923215899, 'recall': 0.9071494893221913, 'f1': 0.8946886446886446, 'number': 1077} | 0.8502 | 0.8828 | 0.8662 | 0.8072 |
61
+ | 0.0058 | 52.6316 | 1000 | 1.4794 | {'precision': 0.8272017837235228, 'recall': 0.9082007343941249, 'f1': 0.8658109684947491, 'number': 817} | {'precision': 0.5203252032520326, 'recall': 0.5378151260504201, 'f1': 0.5289256198347108, 'number': 119} | {'precision': 0.8829981718464351, 'recall': 0.8969359331476323, 'f1': 0.889912482726854, 'number': 1077} | 0.8382 | 0.8803 | 0.8587 | 0.7964 |
62
+ | 0.0038 | 63.1579 | 1200 | 1.5286 | {'precision': 0.8443935926773455, 'recall': 0.9033047735618115, 'f1': 0.872856298048492, 'number': 817} | {'precision': 0.625, 'recall': 0.5042016806722689, 'f1': 0.5581395348837209, 'number': 119} | {'precision': 0.8991674375578168, 'recall': 0.9025069637883009, 'f1': 0.9008341056533827, 'number': 1077} | 0.8630 | 0.8793 | 0.8711 | 0.8084 |
63
+ | 0.0023 | 73.6842 | 1400 | 1.6443 | {'precision': 0.8725146198830409, 'recall': 0.9130966952264382, 'f1': 0.8923444976076554, 'number': 817} | {'precision': 0.5, 'recall': 0.5210084033613446, 'f1': 0.5102880658436215, 'number': 119} | {'precision': 0.8906955736224029, 'recall': 0.9155060352831941, 'f1': 0.9029304029304029, 'number': 1077} | 0.8600 | 0.8912 | 0.8753 | 0.8054 |
64
+ | 0.0012 | 84.2105 | 1600 | 1.6379 | {'precision': 0.8404977375565611, 'recall': 0.9094247246022031, 'f1': 0.8736037624926513, 'number': 817} | {'precision': 0.6224489795918368, 'recall': 0.5126050420168067, 'f1': 0.5622119815668203, 'number': 119} | {'precision': 0.8944444444444445, 'recall': 0.8969359331476323, 'f1': 0.8956884561891516, 'number': 1077} | 0.8584 | 0.8793 | 0.8687 | 0.8008 |
65
+ | 0.0005 | 94.7368 | 1800 | 1.6798 | {'precision': 0.8450057405281286, 'recall': 0.9008567931456548, 'f1': 0.8720379146919431, 'number': 817} | {'precision': 0.6534653465346535, 'recall': 0.5546218487394958, 'f1': 0.6000000000000001, 'number': 119} | {'precision': 0.8886861313868614, 'recall': 0.904363974001857, 'f1': 0.8964565117349288, 'number': 1077} | 0.8588 | 0.8823 | 0.8704 | 0.7988 |
66
+ | 0.0004 | 105.2632 | 2000 | 1.6804 | {'precision': 0.8596491228070176, 'recall': 0.8996328029375765, 'f1': 0.8791866028708135, 'number': 817} | {'precision': 0.5203252032520326, 'recall': 0.5378151260504201, 'f1': 0.5289256198347108, 'number': 119} | {'precision': 0.8869801084990958, 'recall': 0.9108635097493036, 'f1': 0.8987631699496106, 'number': 1077} | 0.8541 | 0.8843 | 0.8689 | 0.8032 |
67
+ | 0.0003 | 115.7895 | 2200 | 1.6352 | {'precision': 0.8713105076741441, 'recall': 0.9033047735618115, 'f1': 0.8870192307692307, 'number': 817} | {'precision': 0.6153846153846154, 'recall': 0.5378151260504201, 'f1': 0.5739910313901345, 'number': 119} | {'precision': 0.8938848920863309, 'recall': 0.9229340761374187, 'f1': 0.9081772498857925, 'number': 1077} | 0.8706 | 0.8922 | 0.8813 | 0.8066 |
68
+ | 0.0002 | 126.3158 | 2400 | 1.6323 | {'precision': 0.8683901292596945, 'recall': 0.9045287637698899, 'f1': 0.8860911270983215, 'number': 817} | {'precision': 0.6095238095238096, 'recall': 0.5378151260504201, 'f1': 0.5714285714285715, 'number': 119} | {'precision': 0.90063233965673, 'recall': 0.9257195914577531, 'f1': 0.913003663003663, 'number': 1077} | 0.8725 | 0.8942 | 0.8832 | 0.8071 |
69
 
70
 
71
  ### Framework versions
logs/events.out.tfevents.1719324686.Allianz-Editique.1964.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b1299eb6d74b8e28c8d2387d1e238587c93ad4a14be4f0265c9e80338d7e6ad4
3
- size 13828
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a85238cc1c862c122110f139d2afb55feaa39b8d8fb8ad8f70f2e69e731c1287
3
+ size 14182
logs/events.out.tfevents.1719327221.Allianz-Editique.2290.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c9c6bc86fc596f13c14eab264f16f71f21c23a60689532eb09247a791265ba6
3
+ size 5248
logs/events.out.tfevents.1719343104.Allianz-Editique.3019.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea0ac4e9a13855e426d03bb133ed117eefe606a0cb3c255ab028085f4aee918a
3
+ size 5249
logs/events.out.tfevents.1719343147.Allianz-Editique.3155.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6de03e5a3f798cb5be15e8f373fe38a9b13c6551c92103500789883ff4b1610
3
+ size 5249
logs/events.out.tfevents.1719343178.Allianz-Editique.3263.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4c0fae22fbcf76bba24fd2eb209645717eaf9fbfdbabd6d97cf63906193a304
3
+ size 5248
logs/events.out.tfevents.1719343262.Allianz-Editique.3404.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cb430da5d5cab079849760539a7009dede5bf3b68b430af6ca1a054fc73857b
3
+ size 5248
logs/events.out.tfevents.1719343334.Allianz-Editique.3488.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d9aa91b3d17fa46ffe55fd760660469f5867f878ca81d1ea9f138ab5d3921bb
3
+ size 5248
logs/events.out.tfevents.1719343371.Allianz-Editique.3545.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b17d3cb536729e4aebbfa2f6c7848b4fb9d23c39ca2a6c0e1fc6fe14e33977b5
3
+ size 5249
logs/events.out.tfevents.1719343400.Allianz-Editique.3601.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d92473bae6545a672213c06612a7846830d7b1d329c0d1b138939c02cb79825
3
+ size 5963
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c70a90e5d4d26fc7c7013bb123fe3b193c5014557ead3e8ecf1ac08e83bf0dfb
3
  size 520727564
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81e020b99027afbee6d124338076c5bc9b72d2d68ea799f224dd6989bd56ec08
3
  size 520727564
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:86ad393aa6d615a87b713d89719388c8fba8b242b5e26f58d85262ff7666faeb
3
  size 5176
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6369f95a7a9609c09fd1325036b01bed5342c7c17a44f6cc72c434aa2c766364
3
  size 5176