|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- multi_news |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-small-Abstractive-Summarizer |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: multi_news |
|
type: multi_news |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 15.0486 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-Abstractive-Summarizer |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co./t5-small) on the multi_news dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.8162 |
|
- Rouge1: 15.0486 |
|
- Rouge2: 5.1197 |
|
- Rougel: 12.0288 |
|
- Rougelsum: 13.4434 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.00056 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 2.7895 | 1.0 | 113 | 2.7479 | 15.6051 | 5.1347 | 12.2224 | 13.8875 | |
|
| 2.6034 | 2.0 | 226 | 2.7745 | 15.2054 | 4.7334 | 11.7555 | 13.436 | |
|
| 2.4515 | 3.0 | 339 | 2.7820 | 15.008 | 4.6612 | 11.5993 | 13.3788 | |
|
| 2.3439 | 4.0 | 452 | 2.8056 | 15.2475 | 4.9304 | 11.8552 | 13.4615 | |
|
| 2.2803 | 5.0 | 565 | 2.8162 | 15.0486 | 5.1197 | 12.0288 | 13.4434 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|