metadata
datasets:
- kyujinpy/KOpen-platypus
language:
- ko
- en
pipeline_tag: text-generation
Model Card for Model ID
base_model : Ko-Llama3-Luxia-8B
Basic usage
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("MDDDDR/Ko-Luxia-8B-it-v0.2")
model = AutoModelForCausalLM.from_pretrained(
"MDDDDR/Ko-Luxia-8B-it-v0.2",
device_map="auto",
torch_dtype=torch.bfloat16
)
input_text = "사과가 뭐야?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
Training dataset
dataset : kyujinpy/KOpen-platypus
Hardware
RTX 3090 Ti 24GB x 1
Model Benchmark Results
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
kobest_boolq | 1 | none | 0 | acc | ↑ | 0.5278 | ± | 0.0133 |
none | 0 | f1 | ↑ | 0.3954 | ± | N/A | ||
kobest_copa | 1 | none | 0 | acc | ↑ | 0.7380 | ± | 0.0139 |
none | 0 | f1 | ↑ | 0.7372 | ± | N/A | ||
kobest_hellaswag | 1 | none | 0 | acc | ↑ | 0.4800 | ± | 0.0224 |
none | 0 | acc_norm | ↑ | 0.6180 | ± | 0.0218 | ||
none | 0 | f1 | ↑ | 0.4774 | ± | N/A | ||
kobest_sentineg | 1 | none | 0 | acc | ↑ | 0.5390 | ± | 0.0250 |
none | 0 | f1 | ↑ | 0.5037 | ± | N/A |