|
--- |
|
datasets: |
|
- kyujinpy/KOpen-platypus |
|
language: |
|
- ko |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
### Model Card for Model ID |
|
base_model : [Ko-Llama3-Luxia-8B](https://huggingface.co./saltlux/Ko-Llama3-Luxia-8B) |
|
|
|
### Basic usage |
|
```python |
|
# pip install accelerate |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("MDDDDR/Ko-Luxia-8B-it-v0.1") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"MDDDDR/Ko-Luxia-8B-it-v0.1", |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16 |
|
) |
|
|
|
input_text = "사과가 뭐야?" |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
### Training dataset |
|
dataset : [kyujinpy/KOpen-platypus](https://huggingface.co./datasets/kyujinpy/KOpen-platypus) |
|
|
|
### lora_config and bnb_config in Training |
|
|
|
```python |
|
bnd_config = BitsAndBytesConfig( |
|
load_in_4bit = True, |
|
bnb_4bit_use_double_quant = True, |
|
bnb_4bit_quant_type = 'nf4', |
|
bnb_4bit_compute_dtype = torch.bfloat16 |
|
) |
|
|
|
lora_config = LoraConfig( |
|
r = 16, |
|
lora_alpha = 16, |
|
lora_dropout = 0.05, |
|
target_modules = ['gate_proj', 'up_proj', 'down_proj'] |
|
) |
|
``` |
|
|
|
### Hardware |
|
RTX 3090 Ti 24GB x 1 |
|
|
|
### Evaluation Benchmark Results |
|
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |
|
|----------------|------:|------|-----:|--------|---|-----:|---|------| |
|
|kobest_boolq | 1|none | 0|acc |↑ |0.6425|± |0.0128| |
|
| | |none | 0|f1 |↑ |0.6054|± |N/A | |
|
|kobest_copa | 1|none | 0|acc |↑ |0.7340|± |0.0140| |
|
| | |none | 0|f1 |↑ |0.7333|± |N/A | |
|
|kobest_hellaswag| 1|none | 0|acc |↑ |0.4760|± |0.0224| |
|
| | |none | 0|acc_norm|↑ |0.6120|± |0.0218| |
|
| | |none | 0|f1 |↑ |0.4745|± |N/A | |
|
|kobest_sentineg | 1|none | 0|acc |↑ |0.5894|± |0.0247| |
|
| | |none | 0|f1 |↑ |0.5682|± |N/A | |