Ko-Luxia-8B-it-v0.1 / README.md
MDDDDR's picture
Update README.md
a35e1b2 verified
---
datasets:
- kyujinpy/KOpen-platypus
language:
- ko
- en
pipeline_tag: text-generation
---
### Model Card for Model ID
base_model : [Ko-Llama3-Luxia-8B](https://huggingface.co./saltlux/Ko-Llama3-Luxia-8B)
### Basic usage
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("MDDDDR/Ko-Luxia-8B-it-v0.1")
model = AutoModelForCausalLM.from_pretrained(
"MDDDDR/Ko-Luxia-8B-it-v0.1",
device_map="auto",
torch_dtype=torch.bfloat16
)
input_text = "사과가 뭐야?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
### Training dataset
dataset : [kyujinpy/KOpen-platypus](https://huggingface.co./datasets/kyujinpy/KOpen-platypus)
### lora_config and bnb_config in Training
```python
bnd_config = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_use_double_quant = True,
bnb_4bit_quant_type = 'nf4',
bnb_4bit_compute_dtype = torch.bfloat16
)
lora_config = LoraConfig(
r = 16,
lora_alpha = 16,
lora_dropout = 0.05,
target_modules = ['gate_proj', 'up_proj', 'down_proj']
)
```
### Hardware
RTX 3090 Ti 24GB x 1
### Evaluation Benchmark Results
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr|
|----------------|------:|------|-----:|--------|---|-----:|---|------|
|kobest_boolq | 1|none | 0|acc |↑ |0.6425|± |0.0128|
| | |none | 0|f1 |↑ |0.6054|± |N/A |
|kobest_copa | 1|none | 0|acc |↑ |0.7340|± |0.0140|
| | |none | 0|f1 |↑ |0.7333|± |N/A |
|kobest_hellaswag| 1|none | 0|acc |↑ |0.4760|± |0.0224|
| | |none | 0|acc_norm|↑ |0.6120|± |0.0218|
| | |none | 0|f1 |↑ |0.4745|± |N/A |
|kobest_sentineg | 1|none | 0|acc |↑ |0.5894|± |0.0247|
| | |none | 0|f1 |↑ |0.5682|± |N/A |