SlimPajama-DC

SlimPajama-DC logo

SlimPajama-DC is a set of 1.3B parameter language models, distinctively trained on the different combinations of 330B subsets of SlimPajama dataset.

Details of Dataset Combinations for Different Models
details of dataset combinations

Despite being trained on a smaller amount of 330B tokens compared to TinyLlama and Olmo's 3 trillion, SlimPajama-DC surpasses TinyLlama and Olmo in some challenging English tasks.

Our tests comprise: (1) AI2 Reasoning Challenge (25-shot); (2) HellaSwag (10-shot); (3) MMLU (5-shot); (4) TruthfulQA (0-shot)
results

‡ represents the RefinedWeb CC.

Performance on More Benchmarks
results

ARC easy and ARC challenge are evaluated using 25-shot. All other evaluation benchmarks are tested on 0-shot. * represents the results are averaged across multiple sub-items inside each benchmark dataset.

Dataset

Our full dataset is available at SlimPajama-627B-DC.

Model Usage

To load a specific checkpoint, use the revision argument as shown below, for example, SlimPajama-DC-6. All the revisions can be seen from the branch dropdown in the "Files and versions" tab. If no revision argument is provided, it will load the default checkpoint SlimPajama-DC-6.

from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(
    "MBZUAI-LLM/SlimPajama-DC",
    revision="SlimPajama-DC-6",
    trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
    "MBZUAI-LLM/SlimPajama-DC",
    revision="SlimPajama-DC-6",
    trust_remote_code=True
)

prompt = 'int add(int x, int y) {'

input_ids = tokenizer(prompt, return_tensors="pt").input_ids
gen_tokens = model.generate(input_ids, do_sample=True, max_length=400)

print("-"*20 + "Output for model"  + 20 * '-')
print(tokenizer.batch_decode(gen_tokens)[0])

Citation

BibTeX:

@article{shen2023slimpajama,
  title={Slimpajama-dc: Understanding data combinations for llm training},
  author={Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Zhengzhong Liu, Hongyi Wang, Bowen Tan, Joel Hestness, Natalia Vassilieva, Daria Soboleva, Eric Xing},
  journal={arXiv preprint arXiv:2309.10818},
  year={2023}
}
Downloads last month
17
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.