|
--- |
|
tags: |
|
- yolov5 |
|
- yolo |
|
- vision |
|
- object-detection |
|
- biology |
|
- climate |
|
library_name: yolov5 |
|
library_version: 7.0.7 |
|
inference: false |
|
model-index: |
|
- name: mbari-org/megamidwater |
|
results: |
|
- task: |
|
type: object-detection |
|
metrics: |
|
- type: precision |
|
value: 0.73555 |
|
name: [email protected] |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: object-detection |
|
--- |
|
|
|
|
|
### How to use |
|
|
|
- Install [yolov5](https://github.com/fcakyon/yolov5-pip): |
|
|
|
```bash |
|
pip install -U yolov5 |
|
``` |
|
|
|
- Load model and perform prediction: |
|
|
|
```python |
|
import yolov5 |
|
model = yolov5.load('MBARI-org/megamidwater') |
|
|
|
# Run the yolo |
|
# set model parameters |
|
model.conf = 0.25 # NMS confidence threshold |
|
model.iou = 0.1 # NMS IoU threshold |
|
model.agnostic = False # NMS class-agnostic |
|
model.multi_label = False # NMS multiple labels per box |
|
model.max_det = 1000 # maximum number of detections per image |
|
|
|
# set image |
|
img = 'http://dsg.mbari.org/images/dsg/external/Ctenophora/Deiopea_01.png' |
|
|
|
# perform inference |
|
results = model(img, size=1280) |
|
|
|
# print results |
|
print(results.pandas().xyxy[0]) |
|
``` |
|
|
|
- Finetune the model on your custom dataset: |
|
|
|
```bash |
|
yolov5 train --data data.yaml --img 1280 --batch 16 --weights mbari-org/megamidwater --epochs 10 |
|
``` |