language: multilingual
Multilingual-clip: XLM-Roberta-Large-Vit-B-16Plus
Multilingual-CLIP extends OpenAI's English text encoders to multiple other languages. This model only contains the multilingual text encoder. The corresponding image model Vit-B-16Plus
can be retrieved via instructions found on mlfoundations
open_clip repository on Github. We provide a usage example below.
Requirements
To use both the multilingual text encoder and corresponding image encoder, we need to install the packages multilingual-clip
and open_clip_torch
.
pip install multilingual-clip
pip install open_clip_torch
Usage
Extracting embeddings from the text encoder can be done in the following way:
from multilingual_clip import pt_multilingual_clip
import transformers
texts = [
'Three blind horses listening to Mozart.',
'Älgen är skogens konung!',
'Wie leben Eisbären in der Antarktis?',
'Вы знали, что все белые медведи левши?'
]
model_name = 'XLM-Roberta-Large-Vit-B-16Plus'
# Load Model & Tokenizer
model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
embeddings = model.forward(texts, tokenizer)
print("Text features shape:", embeddings.shape)
Extracting embeddings from the corresponding image encoder:
import torch
import open_clip
import requests
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-16-plus-240')
model.to(device)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = model.encode_image(image)
print("Image features shape:", image_features.shape)
Evaluation results
None of the M-CLIP models have been extensivly evaluated, but testing them on Txt2Img retrieval on the humanly translated MS-COCO dataset, we see the following R@10 results:
Name | En | De | Es | Fr | Zh | It | Pl | Ko | Ru | Tr | Jp |
---|---|---|---|---|---|---|---|---|---|---|---|
OpenAI CLIP Vit-B/32 | 90.3 | - | - | - | - | - | - | - | - | - | - |
OpenAI CLIP Vit-L/14 | 91.8 | - | - | - | - | - | - | - | - | - | - |
OpenCLIP ViT-B-16+- | 94.3 | - | - | - | - | - | - | - | - | - | - |
LABSE Vit-L/14 | 91.6 | 89.6 | 89.5 | 89.9 | 88.9 | 90.1 | 89.8 | 80.8 | 85.5 | 89.8 | 73.9 |
XLM-R Large Vit-B/32 | 91.8 | 88.7 | 89.1 | 89.4 | 89.3 | 89.8 | 91.4 | 82.1 | 86.1 | 88.8 | 81.0 |
XLM-R Vit-L/14 | 92.4 | 90.6 | 91.0 | 90.0 | 89.7 | 91.1 | 91.3 | 85.2 | 85.8 | 90.3 | 81.9 |
XLM-R Large Vit-B/16+ | 95.0 | 93.0 | 93.6 | 93.1 | 94.0 | 93.1 | 94.4 | 89.0 | 90.0 | 93.0 | 84.2 |
Training/Model details
Further details about the model training and data can be found in the model card.