distilBERT_with_preprocessing_grid_search
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8637
- Precision: 0.8392
- Recall: 0.8339
- F1: 0.8360
- Accuracy: 0.8630
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.9492 | 1.0 | 510 | 0.5973 | 0.7572 | 0.8287 | 0.7836 | 0.8434 |
0.4661 | 2.0 | 1020 | 0.5080 | 0.8146 | 0.8535 | 0.8311 | 0.8567 |
0.2954 | 3.0 | 1530 | 0.6910 | 0.8283 | 0.8231 | 0.8245 | 0.8591 |
0.2263 | 4.0 | 2040 | 0.7367 | 0.8448 | 0.8293 | 0.8363 | 0.8635 |
0.1749 | 5.0 | 2550 | 0.7399 | 0.8402 | 0.8373 | 0.8383 | 0.8650 |
0.1273 | 6.0 | 3060 | 0.7759 | 0.8352 | 0.8414 | 0.8377 | 0.8689 |
0.1051 | 7.0 | 3570 | 0.8864 | 0.8375 | 0.8271 | 0.8308 | 0.8616 |
0.0877 | 8.0 | 4080 | 0.8407 | 0.8327 | 0.8360 | 0.8335 | 0.8625 |
0.0781 | 9.0 | 4590 | 0.8586 | 0.8345 | 0.8362 | 0.8345 | 0.8645 |
0.0627 | 10.0 | 5100 | 0.8637 | 0.8392 | 0.8339 | 0.8360 | 0.8630 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for LovenOO/distilBERT_with_preprocessing_grid_search
Base model
distilbert/distilbert-base-uncased