|
--- |
|
license: apache-2.0 |
|
base_model: bert-large-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: BERT_large_with_preprocessing_grid_search |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BERT_large_with_preprocessing_grid_search |
|
|
|
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co./bert-large-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0732 |
|
- Precision: 0.0194 |
|
- Recall: 0.125 |
|
- F1: 0.0336 |
|
- Accuracy: 0.1551 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 2.1235 | 1.0 | 510 | 2.0738 | 0.0284 | 0.125 | 0.0462 | 0.2268 | |
|
| 2.1058 | 2.0 | 1020 | 2.0805 | 0.0194 | 0.125 | 0.0336 | 0.1551 | |
|
| 2.1039 | 3.0 | 1530 | 2.0780 | 0.0345 | 0.125 | 0.0541 | 0.2759 | |
|
| 2.1045 | 4.0 | 2040 | 2.0734 | 0.0284 | 0.125 | 0.0462 | 0.2268 | |
|
| 2.0963 | 5.0 | 2550 | 2.0779 | 0.0041 | 0.125 | 0.0080 | 0.0329 | |
|
| 2.0975 | 6.0 | 3060 | 2.0750 | 0.0284 | 0.125 | 0.0462 | 0.2268 | |
|
| 2.0944 | 7.0 | 3570 | 2.0734 | 0.0194 | 0.125 | 0.0336 | 0.1551 | |
|
| 2.1004 | 8.0 | 4080 | 2.0820 | 0.0029 | 0.125 | 0.0056 | 0.0231 | |
|
| 2.0974 | 9.0 | 4590 | 2.0724 | 0.0187 | 0.125 | 0.0326 | 0.1497 | |
|
| 2.0936 | 10.0 | 5100 | 2.0732 | 0.0194 | 0.125 | 0.0336 | 0.1551 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|