LovenOO's picture
update model card README.md
a35e99b
|
raw
history blame
2.4 kB
---
license: apache-2.0
base_model: bert-large-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: BERT_large_with_preprocessing_grid_search
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT_large_with_preprocessing_grid_search
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co./bert-large-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0736
- Precision: 0.0187
- Recall: 0.125
- F1: 0.0326
- Accuracy: 0.1497
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 2.1138 | 1.0 | 510 | 2.0795 | 0.0041 | 0.125 | 0.0080 | 0.0329 |
| 2.1114 | 2.0 | 1020 | 2.0853 | 0.0194 | 0.125 | 0.0336 | 0.1551 |
| 2.106 | 3.0 | 1530 | 2.0806 | 0.0345 | 0.125 | 0.0541 | 0.2759 |
| 2.1015 | 4.0 | 2040 | 2.0758 | 0.0284 | 0.125 | 0.0462 | 0.2268 |
| 2.0997 | 5.0 | 2550 | 2.0808 | 0.0041 | 0.125 | 0.0080 | 0.0329 |
| 2.0998 | 6.0 | 3060 | 2.0754 | 0.0284 | 0.125 | 0.0462 | 0.2268 |
| 2.099 | 7.0 | 3570 | 2.0737 | 0.0194 | 0.125 | 0.0336 | 0.1551 |
| 2.0945 | 8.0 | 4080 | 2.0812 | 0.0045 | 0.125 | 0.0086 | 0.0358 |
| 2.0986 | 9.0 | 4590 | 2.0731 | 0.0187 | 0.125 | 0.0326 | 0.1497 |
| 2.0958 | 10.0 | 5100 | 2.0736 | 0.0187 | 0.125 | 0.0326 | 0.1497 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3