|
--- |
|
license: apache-2.0 |
|
library_name: transformers |
|
--- |
|
|
|
# Mistral-7B-Instruct-SQL-ian |
|
|
|
## About the Model |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3. https://huggingface.co./datasets/gretelai/synthetic_text_to_sql |
|
|
|
- **Model Name:** Mistral-7B-Instruct-SQL-ian |
|
- **Developed by:** kubwa |
|
- **Base Model Name:** mistralai/Mistral-7B-Instruct-v0.3 |
|
- **Base Model URL:** [Mistral-7B-Instruct-v0.3](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.3) |
|
- **Base Model Description:** The Mistral-7B-Instruct-v0.3 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.3. |
|
Mistral-7B-v0.3 has the following changes compared to Mistral-7B-v0.2 |
|
|
|
- Extended vocabulary to 32768 |
|
- Supports v3 Tokenizer |
|
- Supports function calling |
|
- **Dataset Name:** gretelai/synthetic_text_to_sql |
|
- **Dataset URL:** [synthetic_text_to_sql](https://huggingface.co./datasets/gretelai/synthetic_text_to_sql) |
|
- **Dataset Description:** gretelai/synthetic_text_to_sql is a rich dataset of high quality synthetic Text-to-SQL samples, designed and generated using Gretel Navigator, and released under Apache 2.0. |
|
|
|
## Prompt Template |
|
|
|
``` |
|
<s> |
|
### Instruction: |
|
{question} |
|
|
|
### Context: |
|
{schema} |
|
|
|
### Response: |
|
``` |
|
|
|
## How to Use it |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model = AutoModelForCausalLM.from_pretrained("kubwa/Mistral-7B-Instruct-SQL-ian") |
|
tokenizer = AutoTokenizer.from_pretrained("kubwa/Mistral-7B-Instruct-SQL-ian",use_fast=False) |
|
|
|
text = """<s> |
|
### Instruction: |
|
What is the total volume of timber sold by each salesperson, sorted by salesperson? |
|
|
|
### Context: |
|
CREATE TABLE salesperson (salesperson_id INT, name TEXT, region TEXT); INSERT INTO salesperson (salesperson_id, name, region) VALUES (1, 'John Doe', 'North'), (2, 'Jane Smith', 'South'); CREATE TABLE timber_sales (sales_id INT, salesperson_id INT, volume REAL, sale_date DATE); INSERT INTO timber_sales (sales_id, salesperson_id, volume, sale_date) VALUES (1, 1, 120, '2021-01-01'), (2, 1, 150, '2021-02-01'), (3, 2, 180, '2021-01-01'); |
|
|
|
### Response: |
|
""" |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
inputs = tokenizer(text, return_tensors="pt") |
|
inputs = {key: value.to(device) for key, value in inputs.items()} |
|
|
|
outputs = model.generate(**inputs, max_new_tokens=300, pad_token_id=tokenizer.eos_token_id) |
|
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
|
|
``` |
|
|
|
## Example Output |
|
|
|
``` |
|
### Instruction: |
|
What is the total volume of timber sold by each salesperson, sorted by salesperson? |
|
|
|
### Context: |
|
CREATE TABLE salesperson (salesperson_id INT, name TEXT, region TEXT); INSERT INTO salesperson (salesperson_id, name, region) VALUES (1, 'John Doe', 'North'), (2, 'Jane Smith', 'South'); CREATE TABLE timber_sales (sales_id INT, salesperson_id INT, volume REAL, sale_date DATE); INSERT INTO timber_sales (sales_id, salesperson_id, volume, sale_date) VALUES (1, 1, 120, '2021-01-01'), (2, 1, 150, '2021-02-01'), (3, 2, 180, '2021-01-01'); |
|
|
|
### Response: |
|
SELECT salesperson.name, SUM(timber_sales.volume) as total_volume FROM salesperson JOIN timber_sales ON salesperson.salesperson_id = timber_sales.salesperson_id GROUP BY salesperson.name ORDER BY total_volume DESC; |
|
``` |
|
|
|
## Hardware and Software |
|
- **Training Hardware:** 4 Tesla V100-PCIE-32GB GPUs |
|
|
|
## License |
|
- Apache-2.0 |