LoneStriker's picture
Upload folder using huggingface_hub
e8e7b9e verified
metadata
tags:
  - merge
license: other
model-index:
  - name: BoreanGale-70B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 73.89
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 89.37
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 75.19
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 68.6
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 84.53
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 67.32
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
          name: Open LLM Leaderboard

BoreanGale-70B

A merge using a custom algorithm (NearSwap) of:



Quants

Several quants are available thanks to community efforts.

Type Misc Author
GGUF iMat Q3 Nexesenex
GGUF iMat mradermacher
GGUF Q8_0 mradermacher

NearSwap Algorithm

NearSwap retains most of the weights of the base model (Miqu), but when a weight is similar between the two, it is interpolated to the secondary model (WinterGoddess) value. A parameter t specifies the sameness threshold. When the distance between two values is below t, the weight from the secondary model (WinterGoddess) is used.

This version of the model uses t = 0.001. At this t, about 10% of weights are fully switched to WinterGoddess. Model quality rapidly degrades above t = 0.0025:

  • t = 0.0001 (~0.8% full swap): QuartetAnemoi-70B-t0.0001
  • t = 0.0003 (~2% full swap)
  • t = 0.001 (~10% full swap): This model
  • t = 0.0025 (~18% full swap): Generates one paragraph okay, but then reverts to garbage
  • t = 0.005 (~35% full swap): Garbage; semi-related word lists
  • t = 0.01 (~55% full swap): Garbage; pseudorandom tokens output

NearSwap implementation:

    t: Union[float, np.ndarray],
    v0: Union[np.ndarray, torch.Tensor],
    v1: Union[np.ndarray, torch.Tensor],
...
    lweight = numpy.absolute(v0-v1)
    lweight = t / lweight
    lweight = numpy.nan_to_num(lweight, nan=1.0, posinf=1.0, neginf=1.0)
    numpy.clip(lweight, a_min=0.0, a_max=1.0, out=lweight)
    res = lerp(lweight,v0,v1)


License and Use

Since the ultimate origin of Miqu is at this time unknown beyond speculation, this model is for noncommercial research use only.



Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 76.48
AI2 Reasoning Challenge (25-Shot) 73.89
HellaSwag (10-Shot) 89.37
MMLU (5-Shot) 75.19
TruthfulQA (0-shot) 68.6
Winogrande (5-shot) 84.53
GSM8k (5-shot) 67.32