LoftQ Llama 3
Collection
LoftQ initialization for Llama-3 series
•
4 items
•
Updated
| Paper | Code | PEFT Example |
LoftQ (LoRA-fine-tuning-aware Quantization) provides a quantized backbone Q and LoRA adapters A and B, given a full-precision pre-trained weight W.
This model, Meta-Llama-3-8B-4bit-64rank
, is obtained from LLAMA-3-8B.
The backbone is under LoftQ/Meta-Llama-3-8B-4bit-64rank
and LoRA adapters are under the subfolder='loftq_init'
.
Here's an example of loading this model and preparing for the LoRA fine-tuning.
import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
MODEL_ID = "LoftQ/Meta-Llama-3-8B-4bit-64rank"
base_model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
peft_model = PeftModel.from_pretrained(
base_model,
MODEL_ID,
subfolder="loftq_init",
is_trainable=True,
)
# Do training with peft_model ...
We have conducted experiments on supervised fine-tuning of GSM8K.
Model | Bits | Rank | LoRA Initial | GSM8K |
---|---|---|---|---|
LLAMA-3-8B | 16 | - | Full model fine-tuning | 70.4±0.7 |
LLAMA-3-8B | 16 | 64 | Gaussian + 0 (LoRA) | 69.3±1.5 |
LLAMA-3-8B | 4 | 64 | Gaussian + 0 (QLoRA) | 67.4±1.0 |
LLAMA-3-8B | 4 | 64 | LoftQ | 68.0±0.6 |
Here is an example code for inference after the model has been fine-tuned on GSM8K.
import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
MODEL_ID = "LoftQ/Meta-Llama-3-8B-4bit-64rank"
base_model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16, # you may change it with different models
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16, # bfloat16 is recommended
bnb_4bit_use_double_quant=False,
bnb_4bit_quant_type='nf4',
),
)
peft_model = PeftModel.from_pretrained(
base_model,
MODEL_ID,
subfolder="gsm8k",
is_trainable=False,
)
# Do inference with peft_model ...
See the full code at our Github Repo
@article{li2023loftq,
title={Loftq: Lora-fine-tuning-aware quantization for large language models},
author={Li, Yixiao and Yu, Yifan and Liang, Chen and He, Pengcheng and Karampatziakis, Nikos and Chen, Weizhu and Zhao, Tuo},
journal={arXiv preprint arXiv:2310.08659},
year={2023}
}