lr-experiment1-7B

The lr-experiment model series is a research project I'm conducting that I will be using to determine the best learning rate to use while fine-tuning Mistral. This model uses a learning rate of 2e-5 with a cosine scheduler and no warmup steps.

I used Locutusque/Hercules-2.0-Mistral-7B as a base model, and further fine-tuned it on CollectiveCognition/chats-data-2023-09-22 using QLoRA for 3 epochs. I will be keeping track of evaluation results, and will comparing it to upcoming models.

Evals

Tasks Version Filter n-shot Metric Value Stderr
agieval_nous N/A none None acc 0.3645 ± 0.0093
none None acc_norm 0.3468 ± 0.0092
- agieval_aqua_rat 1 none None acc 0.2283 ± 0.0264
none None acc_norm 0.2283 ± 0.0264
- agieval_logiqa_en 1 none None acc 0.2965 ± 0.0179
none None acc_norm 0.3303 ± 0.0184
- agieval_lsat_ar 1 none None acc 0.2217 ± 0.0275
none None acc_norm 0.1783 ± 0.0253
- agieval_lsat_lr 1 none None acc 0.4039 ± 0.0217
none None acc_norm 0.3686 ± 0.0214
- agieval_lsat_rc 1 none None acc 0.4870 ± 0.0305
none None acc_norm 0.4424 ± 0.0303
- agieval_sat_en 1 none None acc 0.6408 ± 0.0335
none None acc_norm 0.5971 ± 0.0343
- agieval_sat_en_without_passage 1 none None acc 0.3932 ± 0.0341
none None acc_norm 0.3835 ± 0.0340
- agieval_sat_math 1 none None acc 0.3455 ± 0.0321
none None acc_norm 0.2727 ± 0.0301
Groups Version Filter n-shot Metric Value Stderr
agieval_nous N/A none None acc 0.3645 ± 0.0093
none None acc_norm 0.3468 ± 0.0092
Downloads last month
76
Safetensors
Model size
7.24B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Locutusque/lr-experiment1-7B

Quantizations
2 models

Datasets used to train Locutusque/lr-experiment1-7B

Spaces using Locutusque/lr-experiment1-7B 6