Liu-Xiang's picture
Add new SentenceTransformer model.
a80f72b verified
metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      The lawsuits were filed in the wake of media reports that the U.S.
      Department of Justice had served civil investigative demands upon these
      carriers seeking documents and information relating to this subject.
    sentences:
      - >-
        What type of details does Note 15 of the Consolidated Financial
        Statements provide?
      - >-
        What action did the U.S. Department of Justice take in relation to the
        antitrust allegations against Delta, American, United, and Southwest
        airlines?
      - What does the index in a financial report indicate?
  - source_sentence: >-
      Unearned Revenue comprises mainly unearned revenue related to volume
      licensing programs, which may include Software Assurance ("SA") and cloud
      services.
    sentences:
      - >-
        What was the total number of Starbucks employees worldwide as of October
        1, 2023?
      - >-
        What primarily comprises unearned revenue according to the discussed
        financial statements?
      - >-
        How are impairment charges for the years 2021, 2022, and 2023 recorded
        for restaurants and offices, and what is their impact on financial
        statements?
  - source_sentence: >-
      Total sales and revenues for 2023 were $67.060 billion, an increase of
      $7.633 billion, or 13 percent, compared with $59.427 billion in 2022.
    sentences:
      - >-
        How much did Caterpillar's total sales and revenues increase by in 2023
        compared to 2022?
      - What is included in the cost of revenues for Google?
      - What entity audited the company's consolidated financial statements?
  - source_sentence: >-
      Weighted average remaining lease term and discount rate at March 31, 2023
      and 2022 are as follows: At March 31, 2023 - Lease term: 7.5 years,
      Discount rate: 3.3%; At March 31, 2022 - Lease term: 6.8 years, Discount
      rate: 2.5%.
    sentences:
      - What operating system is used for the Company's iPhone line?
      - >-
        What was the SRO's accrued amount as a receivable for CAT implementation
        expenses as of December 31, 2023?
      - >-
        What were the lease terms and discount rates for operating leases as of
        March 31, 2023 and 2022?
  - source_sentence: >-
      During 2023, continuing investing activities generated $240 million,
      significantly influenced by $14.5 billion received from the maturities and
      sales of investments, with expenditures of $13.9 billion on investments
      and $456 million on property and equipment.
    sentences:
      - >-
        What significant financial activity occurred in continuing investing
        activities in 2023?
      - >-
        What indicates where to find information about legal proceedings in the
        consolidated financial statements of an Annual Report on Form 10-K?
      - >-
        How much cash, cash equivalents, and unrestricted marketable securities
        did the company have as of September 30, 2023?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6871428571428572
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8171428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8542857142857143
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9042857142857142
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6871428571428572
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27238095238095233
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17085714285714282
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09042857142857141
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6871428571428572
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8171428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8542857142857143
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9042857142857142
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7940751364022482
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7589863945578228
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7632147157763912
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.6828571428571428
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8142857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8542857142857143
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9014285714285715
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6828571428571428
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2714285714285714
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17085714285714285
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09014285714285714
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6828571428571428
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8142857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8542857142857143
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9014285714285715
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7923306650275913
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7573690476190474
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7616425347398016
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6642857142857143
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8042857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8557142857142858
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8971428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6642857142857143
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2680952380952381
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17114285714285712
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0897142857142857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6642857142857143
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8042857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8557142857142858
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8971428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.781836757101301
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7447794784580494
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7491639960128558
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6457142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7828571428571428
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.83
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8857142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6457142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26095238095238094
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16599999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08857142857142856
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6457142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7828571428571428
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.83
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8857142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7638551069830676
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7249971655328794
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7295529486648893
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.6171428571428571
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7385714285714285
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7928571428571428
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.84
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6171428571428571
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.24619047619047615
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15857142857142856
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08399999999999999
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6171428571428571
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7385714285714285
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7928571428571428
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.84
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7256498773041486
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6893407029478454
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6948404384614005
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Liu-Xiang/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'During 2023, continuing investing activities generated $240 million, significantly influenced by $14.5 billion received from the maturities and sales of investments, with expenditures of $13.9 billion on investments and $456 million on property and equipment.',
    'What significant financial activity occurred in continuing investing activities in 2023?',
    'What indicates where to find information about legal proceedings in the consolidated financial statements of an Annual Report on Form 10-K?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6871
cosine_accuracy@3 0.8171
cosine_accuracy@5 0.8543
cosine_accuracy@10 0.9043
cosine_precision@1 0.6871
cosine_precision@3 0.2724
cosine_precision@5 0.1709
cosine_precision@10 0.0904
cosine_recall@1 0.6871
cosine_recall@3 0.8171
cosine_recall@5 0.8543
cosine_recall@10 0.9043
cosine_ndcg@10 0.7941
cosine_mrr@10 0.759
cosine_map@100 0.7632

Information Retrieval

Metric Value
cosine_accuracy@1 0.6829
cosine_accuracy@3 0.8143
cosine_accuracy@5 0.8543
cosine_accuracy@10 0.9014
cosine_precision@1 0.6829
cosine_precision@3 0.2714
cosine_precision@5 0.1709
cosine_precision@10 0.0901
cosine_recall@1 0.6829
cosine_recall@3 0.8143
cosine_recall@5 0.8543
cosine_recall@10 0.9014
cosine_ndcg@10 0.7923
cosine_mrr@10 0.7574
cosine_map@100 0.7616

Information Retrieval

Metric Value
cosine_accuracy@1 0.6643
cosine_accuracy@3 0.8043
cosine_accuracy@5 0.8557
cosine_accuracy@10 0.8971
cosine_precision@1 0.6643
cosine_precision@3 0.2681
cosine_precision@5 0.1711
cosine_precision@10 0.0897
cosine_recall@1 0.6643
cosine_recall@3 0.8043
cosine_recall@5 0.8557
cosine_recall@10 0.8971
cosine_ndcg@10 0.7818
cosine_mrr@10 0.7448
cosine_map@100 0.7492

Information Retrieval

Metric Value
cosine_accuracy@1 0.6457
cosine_accuracy@3 0.7829
cosine_accuracy@5 0.83
cosine_accuracy@10 0.8857
cosine_precision@1 0.6457
cosine_precision@3 0.261
cosine_precision@5 0.166
cosine_precision@10 0.0886
cosine_recall@1 0.6457
cosine_recall@3 0.7829
cosine_recall@5 0.83
cosine_recall@10 0.8857
cosine_ndcg@10 0.7639
cosine_mrr@10 0.725
cosine_map@100 0.7296

Information Retrieval

Metric Value
cosine_accuracy@1 0.6171
cosine_accuracy@3 0.7386
cosine_accuracy@5 0.7929
cosine_accuracy@10 0.84
cosine_precision@1 0.6171
cosine_precision@3 0.2462
cosine_precision@5 0.1586
cosine_precision@10 0.084
cosine_recall@1 0.6171
cosine_recall@3 0.7386
cosine_recall@5 0.7929
cosine_recall@10 0.84
cosine_ndcg@10 0.7256
cosine_mrr@10 0.6893
cosine_map@100 0.6948

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 8 tokens
    • mean: 45.54 tokens
    • max: 288 tokens
    • min: 9 tokens
    • mean: 20.38 tokens
    • max: 46 tokens
  • Samples:
    positive anchor
    If the discount rate used to calculate the present value of these reserves changed by 25 basis points, net income would have been affected by approximately $1.1 million for fiscal 2023. By what amount would net income for fiscal 2023 be affected if the discount rate used for calculating the present value of reserves changed by 25 basis points?
    Net revenue $
    Item 8 covers Financial Statements and Supplementary Data. What is included in Item 8 of the document?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.96 3 - 0.6943 0.7200 0.7341 0.6337 0.7346
1.92 6 - 0.7178 0.7393 0.7525 0.6764 0.7513
2.88 9 - 0.7280 0.7468 0.7584 0.6926 0.7611
3.2 10 3.3659 - - - - -
3.84 12 - 0.7296 0.7492 0.7616 0.6948 0.7632
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.9.18
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}