metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
The lawsuits were filed in the wake of media reports that the U.S.
Department of Justice had served civil investigative demands upon these
carriers seeking documents and information relating to this subject.
sentences:
- >-
What type of details does Note 15 of the Consolidated Financial
Statements provide?
- >-
What action did the U.S. Department of Justice take in relation to the
antitrust allegations against Delta, American, United, and Southwest
airlines?
- What does the index in a financial report indicate?
- source_sentence: >-
Unearned Revenue comprises mainly unearned revenue related to volume
licensing programs, which may include Software Assurance ("SA") and cloud
services.
sentences:
- >-
What was the total number of Starbucks employees worldwide as of October
1, 2023?
- >-
What primarily comprises unearned revenue according to the discussed
financial statements?
- >-
How are impairment charges for the years 2021, 2022, and 2023 recorded
for restaurants and offices, and what is their impact on financial
statements?
- source_sentence: >-
Total sales and revenues for 2023 were $67.060 billion, an increase of
$7.633 billion, or 13 percent, compared with $59.427 billion in 2022.
sentences:
- >-
How much did Caterpillar's total sales and revenues increase by in 2023
compared to 2022?
- What is included in the cost of revenues for Google?
- What entity audited the company's consolidated financial statements?
- source_sentence: >-
Weighted average remaining lease term and discount rate at March 31, 2023
and 2022 are as follows: At March 31, 2023 - Lease term: 7.5 years,
Discount rate: 3.3%; At March 31, 2022 - Lease term: 6.8 years, Discount
rate: 2.5%.
sentences:
- What operating system is used for the Company's iPhone line?
- >-
What was the SRO's accrued amount as a receivable for CAT implementation
expenses as of December 31, 2023?
- >-
What were the lease terms and discount rates for operating leases as of
March 31, 2023 and 2022?
- source_sentence: >-
During 2023, continuing investing activities generated $240 million,
significantly influenced by $14.5 billion received from the maturities and
sales of investments, with expenditures of $13.9 billion on investments
and $456 million on property and equipment.
sentences:
- >-
What significant financial activity occurred in continuing investing
activities in 2023?
- >-
What indicates where to find information about legal proceedings in the
consolidated financial statements of an Annual Report on Form 10-K?
- >-
How much cash, cash equivalents, and unrestricted marketable securities
did the company have as of September 30, 2023?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6871428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8171428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8542857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6871428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27238095238095233
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17085714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09042857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6871428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8171428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8542857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7940751364022482
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7589863945578228
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7632147157763912
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6828571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8142857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8542857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9014285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6828571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2714285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17085714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09014285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6828571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8142857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8542857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9014285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7923306650275913
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7573690476190474
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7616425347398016
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6642857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8042857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8557142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8971428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6642857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2680952380952381
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17114285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0897142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6642857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8042857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8557142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8971428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.781836757101301
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7447794784580494
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7491639960128558
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6457142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7828571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.83
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8857142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6457142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26095238095238094
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16599999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08857142857142856
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6457142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7828571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.83
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8857142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7638551069830676
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7249971655328794
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7295529486648893
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6171428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7385714285714285
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7928571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.84
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6171428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24619047619047615
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15857142857142856
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08399999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6171428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7385714285714285
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7928571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.84
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7256498773041486
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6893407029478454
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6948404384614005
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Liu-Xiang/bge-base-financial-matryoshka")
sentences = [
'During 2023, continuing investing activities generated $240 million, significantly influenced by $14.5 billion received from the maturities and sales of investments, with expenditures of $13.9 billion on investments and $456 million on property and equipment.',
'What significant financial activity occurred in continuing investing activities in 2023?',
'What indicates where to find information about legal proceedings in the consolidated financial statements of an Annual Report on Form 10-K?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6871 |
cosine_accuracy@3 |
0.8171 |
cosine_accuracy@5 |
0.8543 |
cosine_accuracy@10 |
0.9043 |
cosine_precision@1 |
0.6871 |
cosine_precision@3 |
0.2724 |
cosine_precision@5 |
0.1709 |
cosine_precision@10 |
0.0904 |
cosine_recall@1 |
0.6871 |
cosine_recall@3 |
0.8171 |
cosine_recall@5 |
0.8543 |
cosine_recall@10 |
0.9043 |
cosine_ndcg@10 |
0.7941 |
cosine_mrr@10 |
0.759 |
cosine_map@100 |
0.7632 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6829 |
cosine_accuracy@3 |
0.8143 |
cosine_accuracy@5 |
0.8543 |
cosine_accuracy@10 |
0.9014 |
cosine_precision@1 |
0.6829 |
cosine_precision@3 |
0.2714 |
cosine_precision@5 |
0.1709 |
cosine_precision@10 |
0.0901 |
cosine_recall@1 |
0.6829 |
cosine_recall@3 |
0.8143 |
cosine_recall@5 |
0.8543 |
cosine_recall@10 |
0.9014 |
cosine_ndcg@10 |
0.7923 |
cosine_mrr@10 |
0.7574 |
cosine_map@100 |
0.7616 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6643 |
cosine_accuracy@3 |
0.8043 |
cosine_accuracy@5 |
0.8557 |
cosine_accuracy@10 |
0.8971 |
cosine_precision@1 |
0.6643 |
cosine_precision@3 |
0.2681 |
cosine_precision@5 |
0.1711 |
cosine_precision@10 |
0.0897 |
cosine_recall@1 |
0.6643 |
cosine_recall@3 |
0.8043 |
cosine_recall@5 |
0.8557 |
cosine_recall@10 |
0.8971 |
cosine_ndcg@10 |
0.7818 |
cosine_mrr@10 |
0.7448 |
cosine_map@100 |
0.7492 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6457 |
cosine_accuracy@3 |
0.7829 |
cosine_accuracy@5 |
0.83 |
cosine_accuracy@10 |
0.8857 |
cosine_precision@1 |
0.6457 |
cosine_precision@3 |
0.261 |
cosine_precision@5 |
0.166 |
cosine_precision@10 |
0.0886 |
cosine_recall@1 |
0.6457 |
cosine_recall@3 |
0.7829 |
cosine_recall@5 |
0.83 |
cosine_recall@10 |
0.8857 |
cosine_ndcg@10 |
0.7639 |
cosine_mrr@10 |
0.725 |
cosine_map@100 |
0.7296 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6171 |
cosine_accuracy@3 |
0.7386 |
cosine_accuracy@5 |
0.7929 |
cosine_accuracy@10 |
0.84 |
cosine_precision@1 |
0.6171 |
cosine_precision@3 |
0.2462 |
cosine_precision@5 |
0.1586 |
cosine_precision@10 |
0.084 |
cosine_recall@1 |
0.6171 |
cosine_recall@3 |
0.7386 |
cosine_recall@5 |
0.7929 |
cosine_recall@10 |
0.84 |
cosine_ndcg@10 |
0.7256 |
cosine_mrr@10 |
0.6893 |
cosine_map@100 |
0.6948 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 8 tokens
- mean: 45.54 tokens
- max: 288 tokens
|
- min: 9 tokens
- mean: 20.38 tokens
- max: 46 tokens
|
- Samples:
positive |
anchor |
If the discount rate used to calculate the present value of these reserves changed by 25 basis points, net income would have been affected by approximately $1.1 million for fiscal 2023. |
By what amount would net income for fiscal 2023 be affected if the discount rate used for calculating the present value of reserves changed by 25 basis points? |
Net revenue |
$ |
Item 8 covers Financial Statements and Supplementary Data. |
What is included in Item 8 of the document? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.96 |
3 |
- |
0.6943 |
0.7200 |
0.7341 |
0.6337 |
0.7346 |
1.92 |
6 |
- |
0.7178 |
0.7393 |
0.7525 |
0.6764 |
0.7513 |
2.88 |
9 |
- |
0.7280 |
0.7468 |
0.7584 |
0.6926 |
0.7611 |
3.2 |
10 |
3.3659 |
- |
- |
- |
- |
- |
3.84 |
12 |
- |
0.7296 |
0.7492 |
0.7616 |
0.6948 |
0.7632 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.9.18
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}