G0515HMA4H
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1342
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.2177 | 0.09 | 10 | 2.8976 |
2.6702 | 0.18 | 20 | 2.2910 |
1.8959 | 0.27 | 30 | 1.4043 |
1.043 | 0.36 | 40 | 0.5929 |
0.375 | 0.45 | 50 | 0.2097 |
0.1786 | 0.54 | 60 | 0.1591 |
0.1553 | 0.63 | 70 | 0.1511 |
0.1598 | 0.73 | 80 | 0.1548 |
0.1472 | 0.82 | 90 | 0.1499 |
0.1475 | 0.91 | 100 | 0.1484 |
0.1495 | 1.0 | 110 | 0.1482 |
0.1437 | 1.09 | 120 | 0.1490 |
0.1448 | 1.18 | 130 | 0.1472 |
0.1452 | 1.27 | 140 | 0.1460 |
0.1482 | 1.36 | 150 | 0.1459 |
0.143 | 1.45 | 160 | 0.1478 |
0.1435 | 1.54 | 170 | 0.1461 |
0.1448 | 1.63 | 180 | 0.1441 |
0.1461 | 1.72 | 190 | 0.1482 |
0.1451 | 1.81 | 200 | 0.1454 |
0.1462 | 1.9 | 210 | 0.1447 |
0.1459 | 1.99 | 220 | 0.1433 |
0.1419 | 2.08 | 230 | 0.1411 |
0.1366 | 2.18 | 240 | 0.1400 |
0.1371 | 2.27 | 250 | 0.1432 |
0.1391 | 2.36 | 260 | 0.1385 |
0.1356 | 2.45 | 270 | 0.1383 |
0.1343 | 2.54 | 280 | 0.1363 |
0.1326 | 2.63 | 290 | 0.1350 |
0.1303 | 2.72 | 300 | 0.1343 |
0.1341 | 2.81 | 310 | 0.1342 |
0.1328 | 2.9 | 320 | 0.1342 |
0.1337 | 2.99 | 330 | 0.1342 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/G0515HMA4H
Base model
google/gemma-2b