Obtained from freecs/ThetaWave-7B after SFT fine tuning.

Open-Orca/SlimOrca datasets were used.

The model does not currently support system_prompt because it uses mistral's chat_template, and the next release is in training to switch to the chatml template to support system_prompt. system_prompt can be implemented if you manually change the chat_template, but the After testing, this seems to degrade the model performance.

More model details will be released...

Vllm deployment command

# Single graphics card
python /path/to/vllm/vllm/entrypoints/openai/api_server.py \
--model '/path/to/ThetaWave-7B-sft' \
--tokenizer '/path/to/ThetaWave-7B-sft' \
--tokenizer-mode auto \
--dtype float16 \
--enforce-eager \
--host 0.0.0.0 \
--port 6000 \
--disable-log-stats \
--disable-log-requests

# Dual graphics cards
python /path/to/vllm/vllm/entrypoints/openai/api_server.py \
--model '/path/to/ThetaWave-7B-sft' \
--tokenizer '/path/to/ThetaWave-7B-sft' \
--tokenizer-mode auto \
--dtype float16 \
--enforce-eager \
--tensor-parallel-size 2 \
--worker-use-ray \
--engine-use-ray \
--host 0.0.0.0 \
--port 6000 \
--disable-log-stats \
--disable-log-requests

Try it directly:

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("Liangmingxin/ThetaWave-7B-sft")
tokenizer = AutoTokenizer.from_pretrained("Liangmingxin/ThetaWave-7B-sft")

messages = [
    {"role": "user", "content": "Who are you?"},
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
Downloads last month
121
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Liangmingxin/ThetaWave-7B-sft

Quantizations
1 model

Dataset used to train Liangmingxin/ThetaWave-7B-sft

Spaces using Liangmingxin/ThetaWave-7B-sft 6