SentenceTransformer based on intfloat/multilingual-e5-base

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base on the grag-go-idf-pos-neg dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Lettria/idf-go_embedder-contrastive")
# Run inference
sentences = [
    'Type de project: Les thématiques abordées, au titre du programme, comprennent la santé numérique et les risques de dépendance, la protection des données personnelles et la prévention des situations de harcèlement et de cyberharcèlement ; les interventions questionnent aussi les aspects numériques de la vie affective et sexuelle et son corollaire de risques tels que le "sexting", le "Revenge porn", le chantage sexuel et l\'impact de la pornographie sur les jeunes.  \xa0 A la demande des établissements, des focus thématiques peuvent être réalisés sur d\'autres sujets comme la prévention des phénomènes de prostitution des mineurs, les problématiques liées aux jeux d\'argent et de hasard en ligne ou encore la lutte contre la désinformation à travers une approche d\'éducation aux médias et à l\'information.  \xa0 Les établissements bénéficiaires\xa0peuvent choisir jusqu\'à deux thématiques qu\'ils identifient comme prioritaires.',
    "[petites entreprises innovantes franciliennes](bénéficiaire) --- INCLUT ---> [Professionnel - Créateur d'entreprise](bénéficiaire)",
    '[prévention du cyberharcèlement] (thématique)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.3639
spearman_cosine 0.3817

Binary Classification

Metric Value
cosine_accuracy 0.8183
cosine_accuracy_threshold 0.9359
cosine_f1 0.8962
cosine_f1_threshold 0.8844
cosine_precision 0.8164
cosine_recall 0.9932
cosine_ap 0.9359

Training Details

Training Dataset

grag-go-idf-pos-neg

  • Dataset: grag-go-idf-pos-neg at ecbf53b
  • Size: 6,260 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 24 tokens
    • mean: 195.35 tokens
    • max: 429 tokens
    • min: 8 tokens
    • mean: 24.36 tokens
    • max: 75 tokens
    • 0: ~16.40%
    • 1: ~83.60%
  • Samples:
    sentence1 sentence2 label
    Procédures et démarches: L'appel à projets Lycées Éco-Responsables est organisé par la Région tous les ans, en avril. Pour y participer : Rendez-vous sur la plateforme des aides mesdemarches.iledefrance.fr.Compléter votre dossier avec le descriptif et le chiffrage des actions proposées, ainsi que le public visé et les résultats escomptés. L’implication large des acteurs de la communauté scolaire (élèves, enseignants, agents des lycées, direction), les moyens mis en œuvre et la structuration du projet, ainsi que son caractère innovant, seront des critères d’appréciation de la qualité de votre dossier. Selon les capacités de l’enveloppe budgétaire, les bénéficiaires seront informés de la décision votée en Commission permanente entre fin septembre et début octobre 2024. Si le projet est retenu, une notification sera envoyée au proviseur (e) de l’établissement pour informer du projet ou des projets financé(s) et du ou des montant(s) alloué(s). A cela, il est demandé aux établissements... [Commission permanente] (organisation) 1
    Procédures et démarches: Consultation de l'appel à projets et dépôt de candidature en ligne ici :http://leaderpia.iledefrance.fr/SESAME-Filieres-France-2030
    Bénéficiaires: Professionnel - Chercheur, Établissement de recherche et laboratoire
    Précision sure les bénéficiaires: Le projet est présenté par un unique porteur, prioritairement un organisme ou établissement d'enseignement supérieur et de recherche ou de transfert de technologie, localisé en Île-de-France.Il peut également être porté par une entreprise ou éventuellement par une structure fédérant plusieurs entreprises, voire une entité représentative des entreprises de la filière (telle une fédération professionnelle, un GIE, une association, un pôle de compétitivité...), pour autant que les projets associent étroitement des organismes de recherche franciliens. Dans ce cas, ils doivent obligatoirement être associés à leur gouvernance et à leur programme d'activités.
    [Chercheur] (personne) 1
    Procédures et démarches: Quand déposer la demande ?La demande de subvention doit être déposée avant tout commencement d'exécution.Où déposer la demande ? Le dépôt des demandes de subvention doit se faire sur la plateforme des aides régionales mesdemarches.iledefrance.fr. sélectionner le téléservice « Aides aux copropriétés en difficulté labellisées par la Région: ingénierie et travaux »  Qui peut déposer la demande ? L'opérateur chargé du suivi-animation,La collectivité d'implantation,Le cas échéant , le mandataire de la copropriété (syndic, administrateur provisoire).
    Bénéficiaires: Collectivité ou institution - Autre (GIP, copropriété, EPA...), Collectivité ou institution - Communes de 10 000 à 20 000 hab, Collectivité ou institution - Communes de < 2000 hab, Collectivité ou institution - Département, Collectivité ou institution - EPCI, Collectivité ou institution - EPT / Métropole du Grand Paris, Particulier - Francilien
    Précision sure les bénéficiaires: Les syndicats des coprop...
    [collectivités territoriales d'implantation] (bénéficiaire) 1
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Evaluation Dataset

grag-go-idf-pos-neg

  • Dataset: grag-go-idf-pos-neg at ecbf53b
  • Size: 1,662 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 24 tokens
    • mean: 179.15 tokens
    • max: 394 tokens
    • min: 8 tokens
    • mean: 24.58 tokens
    • max: 73 tokens
    • 0: ~20.60%
    • 1: ~79.40%
  • Samples:
    sentence1 sentence2 label
    Type de project: Les projets éligibles doivent être déployés dans les résidences étudiantes à caractère social. Les projets doivent favoriser l’engagement bénévole des résidents et contribuer à l’animation au sein des résidences étudiantes. Ils doivent contribuer à améliorer les conditions de vie dans les résidences (favoriser la sociabilité, le vivre-ensemble, l’appropriation des bâtiments) et enrichir les compétences informelles des étudiants par la réalisation de projets. Le porteur de projet devra prévoir : Une animation collective,Une mise en œuvre du projet ancrée dans le territoire d'implantation de la résidence étudiante,un accompagnement des projets inités. [projets éligibles] (projet) 1
    Type de project: Les thématiques abordées, au titre du programme, comprennent la santé numérique et les risques de dépendance, la protection des données personnelles et la prévention des situations de harcèlement et de cyberharcèlement ; les interventions questionnent aussi les aspects numériques de la vie affective et sexuelle et son corollaire de risques tels que le "sexting", le "Revenge porn", le chantage sexuel et l'impact de la pornographie sur les jeunes.   A la demande des établissements, des focus thématiques peuvent être réalisés sur d'autres sujets comme la prévention des phénomènes de prostitution des mineurs, les problématiques liées aux jeux d'argent et de hasard en ligne ou encore la lutte contre la désinformation à travers une approche d'éducation aux médias et à l'information.   Les établissements bénéficiaires peuvent choisir jusqu'à deux thématiques qu'ils identifient comme prioritaires. petites entreprises innovantes franciliennes --- INCLUT ---> Professionnel - Créateur d'entreprise 0
    Type de project: Actions de valorisation (expos physiques ou virtuelles, journées d’étude, site internet, publications, documentaires…),Outils de médiation (cartes et itinéraires papier ou numériques, livrets de visite, outils numériques, multimédia, parcours d’interprétation…),Dispositifs pédagogiques (mallettes pédagogiques, Moocs, supports de visite à destination des jeunes…),Événements rayonnant à l’échelle de l’Île-de-France. Une attention particulière sera portée à la qualité des contenus, à l’originalité et la pertinence des outils ou actions proposés, et à leur adéquation avec les publics ciblés. Événements rayonnant à l’échelle de l’Île-de-France --- ÉVALUÉ_PAR ---> qualité des contenus 1
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • gradient_accumulation_steps: 8
  • num_train_epochs: 10
  • warmup_steps: 626

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 626
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss EmbeddingSimEval_spearman_cosine BinaryClassifEval_cosine_ap
7.9744 1560 0.0021 0.0219 0.3997 0.9399
9.9681 1950 - 0.0217 0.3817 0.9359

Framework Versions

  • Python: 3.11.9
  • Sentence Transformers: 3.3.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
Downloads last month
61
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Lettria/idf-go_embedder-contrastive

Quantized
(16)
this model

Evaluation results