new version: LarkAI/codet5p-770m_nl2sql_oig

use oig-sql dataset and support more complex sql parse

How to Use

import torch
from transformers import AutoTokenizer, BartForConditionalGeneration

device = torch.device('cuda:0')

tokenizer = AutoTokenizer.from_pretrained("LarkAI/bart_large_nl2sql")
model = BartForConditionalGeneration.from_pretrained("LarkAI/bart_large_nl2sql").to(device)

text = "question: get people name with age less 25 table: id, name, age"
inputs = tokenizer([text], max_length=1024, return_tensors="pt")
output_ids = model.generate(inputs["input_ids"].to(device), num_beams=self.beams, max_length=128, min_length=8)
response_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# SELECT name FROM table WHERE age < 25

reference: juierror/flan-t5-text2sql-with-schema - fix this discussion

How to Train

Quick start: https://github.com/huggingface/transformers/blob/main/examples/pytorch/summarization/README.md

Downloads last month
111
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train LarkAI/bart_large_nl2sql

Space using LarkAI/bart_large_nl2sql 1