Kwaipilot KwaiCoder-23B-A4B-v1
1.Model Details
Introduction
KwaiCoder-23BA4-v1 is the latest open-source self-developed code completion model from the Kwaipilot team at Kuaishou. The training of the model relies on an efficient training approach proposed by the Kwaipilot team. By incorporating techniques such as model pruning, knowledge distillation, and fine-grained merging, the training of the 23B-wide MoE architecture code completion model was achieved at 1/30 of the cost compared to traditional methods. It has also set new SOTA benchmarks across multiple code-related evaluation datasets.
Performance
![](https://raw.githubusercontent.com/binglinchengxiash0514/Megatron-LM/refs/heads/main/images/WX20250124-114002%402x.png)
2.Usage
Code Completion
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "Kwaipilot/KwaiCoder-23B-A4B-v1"
tokenizer = AutoTokenizer.from_pretrained(model_id,trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16,trust_remote_code=True)
text = "#write a quick sort algorithm"
inputs = tokenizer(text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=80)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(text):])
Code Insertion
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "Kwaipilot/KwaiCoder-23B-A4B-v1"
tokenizer = AutoTokenizer.from_pretrained(model_id,trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16,trust_remote_code=True)
text = """<|fim▁begin|>def find_longest_substring(s):
seen = {}
max_length = 0
start = 0
<|fim▁hole|>
if char in seen and seen[char] >= start:
start = seen[char] + 1
seen[char] = end
max_length = max(max_length, end - start + 1)
return max_length<|fim▁end|>"""
inputs = tokenizer(text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=80)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(text):])
3.License
This code repository is licensed under the MIT License.
4.BibTex
@misc{kwaicoder,
title = {KwaiCoder: Code mathematical abilities comprehensive improvement.},
author = {Kwaipilot team},
year = {2024},
}
- Downloads last month
- 172
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.