|
--- |
|
library_name: transformers |
|
language: |
|
- sq |
|
license: apache-2.0 |
|
base_model: openai/whisper-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- Kushtrim/audioshqip |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Base Shqip |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Audio Shqip 97 orë |
|
type: Kushtrim/audioshqip |
|
args: 'config: sq, split: test' |
|
metrics: |
|
- type: wer |
|
value: 40.143396979133186 |
|
name: Wer |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Base Shqip |
|
|
|
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co./openai/whisper-base) on the Audio Shqip 97 orë dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5274 |
|
- Wer: 40.1434 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 10000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:-----:|:---------------:|:-------:| |
|
| 1.0357 | 0.3249 | 500 | 1.0437 | 70.9649 | |
|
| 0.7862 | 0.6498 | 1000 | 0.7759 | 57.9971 | |
|
| 0.6561 | 0.9747 | 1500 | 0.6805 | 51.6728 | |
|
| 0.5704 | 1.2995 | 2000 | 0.6337 | 49.0896 | |
|
| 0.5511 | 1.6244 | 2500 | 0.5968 | 47.4252 | |
|
| 0.522 | 1.9493 | 3000 | 0.5740 | 47.2168 | |
|
| 0.4252 | 2.2742 | 3500 | 0.5612 | 43.5865 | |
|
| 0.4411 | 2.5991 | 4000 | 0.5487 | 43.2817 | |
|
| 0.4434 | 2.9240 | 4500 | 0.5373 | 43.3737 | |
|
| 0.3791 | 3.2489 | 5000 | 0.5353 | 42.3143 | |
|
| 0.371 | 3.5737 | 5500 | 0.5297 | 41.3114 | |
|
| 0.4173 | 3.8986 | 6000 | 0.5231 | 41.4012 | |
|
| 0.3009 | 4.2235 | 6500 | 0.5276 | 40.9756 | |
|
| 0.3337 | 4.5484 | 7000 | 0.5249 | 40.4393 | |
|
| 0.3145 | 4.8733 | 7500 | 0.5222 | 40.2154 | |
|
| 0.2897 | 5.1982 | 8000 | 0.5264 | 40.4925 | |
|
| 0.2717 | 5.5231 | 8500 | 0.5256 | 40.6387 | |
|
| 0.2947 | 5.8480 | 9000 | 0.5251 | 40.2753 | |
|
| 0.2933 | 6.1728 | 9500 | 0.5268 | 40.5601 | |
|
| 0.2644 | 6.4977 | 10000 | 0.5274 | 40.1434 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.20.3 |
|
|