CS221-xlnet-large-cased-finetuned-augmentation

This model is a fine-tuned version of xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5488
  • F1: 0.7778
  • Roc Auc: 0.8358
  • Accuracy: 0.5486

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.5737 1.0 165 0.5256 0.2747 0.5539 0.2067
0.433 2.0 330 0.3995 0.5828 0.7099 0.4027
0.3391 3.0 495 0.3516 0.7006 0.7727 0.4514
0.2481 4.0 660 0.3694 0.7110 0.7813 0.5015
0.1585 5.0 825 0.4033 0.7513 0.8097 0.4985
0.1021 6.0 990 0.4539 0.7405 0.7987 0.4878
0.0813 7.0 1155 0.4708 0.7430 0.7991 0.4985
0.0512 8.0 1320 0.5113 0.7554 0.8162 0.5426
0.0287 9.0 1485 0.5563 0.7598 0.8223 0.5289
0.0129 10.0 1650 0.5488 0.7778 0.8358 0.5486
0.0144 11.0 1815 0.5748 0.7595 0.8157 0.5471
0.0094 12.0 1980 0.6090 0.7557 0.8152 0.5532
0.0057 13.0 2145 0.6303 0.7592 0.8167 0.5395

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
52
Safetensors
Model size
361M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Kuongan/CS221-xlnet-large-cased-finetuned-augmentation

Finetuned
(32)
this model