CS221-xlnet-large-cased-finetuned

This model is a fine-tuned version of xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6604
  • F1: 0.7550
  • Roc Auc: 0.8111
  • Accuracy: 0.4675

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.5487 1.0 139 0.5874 0.1435 0.5 0.1300
0.459 2.0 278 0.4370 0.5135 0.6713 0.3430
0.392 3.0 417 0.3982 0.6568 0.7439 0.4116
0.291 4.0 556 0.3839 0.7249 0.7924 0.4747
0.2056 5.0 695 0.4239 0.7129 0.7791 0.4422
0.1551 6.0 834 0.4474 0.7275 0.7883 0.4621
0.0951 7.0 973 0.5284 0.7206 0.7797 0.4477
0.0918 8.0 1112 0.5521 0.7395 0.7985 0.4458
0.0494 9.0 1251 0.5826 0.7458 0.8163 0.4513
0.0284 10.0 1390 0.6400 0.7337 0.7942 0.4440
0.0188 11.0 1529 0.6637 0.7310 0.7913 0.4675
0.0167 12.0 1668 0.6604 0.7550 0.8111 0.4675
0.0118 13.0 1807 0.7297 0.7341 0.7905 0.4531
0.0054 14.0 1946 0.7046 0.7542 0.8086 0.4711
0.0043 15.0 2085 0.7215 0.7480 0.8032 0.4675

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
361M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kuongan/CS221-xlnet-large-cased-finetuned

Finetuned
(26)
this model