NeuralKuke-4-All-7b / README.md
Kukedlc's picture
Upload folder using huggingface_hub
0812565 verified
|
raw
history blame
2.27 kB
---
tags:
- merge
- mergekit
- lazymergekit
- Kukedlc/Neural-4-ARC-7b
- Kukedlc/Neural-4-Wino-7b
- Kukedlc/NeuralSirKrishna-7b
- Kukedlc/Neural-4-QA-7b
- Kukedlc/Neural-4-Maths-7b
base_model:
- Kukedlc/Neural-4-ARC-7b
- Kukedlc/Neural-4-Wino-7b
- Kukedlc/NeuralSirKrishna-7b
- Kukedlc/Neural-4-QA-7b
- Kukedlc/Neural-4-Maths-7b
---
# NeuralKuke-4-All-7b
NeuralKuke-4-All-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Kukedlc/Neural-4-ARC-7b](https://huggingface.co./Kukedlc/Neural-4-ARC-7b)
* [Kukedlc/Neural-4-Wino-7b](https://huggingface.co./Kukedlc/Neural-4-Wino-7b)
* [Kukedlc/NeuralSirKrishna-7b](https://huggingface.co./Kukedlc/NeuralSirKrishna-7b)
* [Kukedlc/Neural-4-QA-7b](https://huggingface.co./Kukedlc/Neural-4-QA-7b)
* [Kukedlc/Neural-4-Maths-7b](https://huggingface.co./Kukedlc/Neural-4-Maths-7b)
## 🧩 Configuration
```yaml
models:
- model: Kukedlc/NeuralSirKrishna-7b
# No parameters necessary for base model
- model: Kukedlc/Neural-4-ARC-7b
parameters:
density: 0.55
weight: 0.2
- model: Kukedlc/Neural-4-Wino-7b
parameters:
density: 0.55
weight: 0.2
- model: Kukedlc/NeuralSirKrishna-7b
parameters:
density: 0.55
weight: 0.2
- model: Kukedlc/Neural-4-QA-7b
parameters:
density: 0.55
weight: 0.2
- model: Kukedlc/Neural-4-Maths-7b
parameters:
density: 0.55
weight: 0.2
merge_method: dare_ties
base_model: Kukedlc/NeuralSirKrishna-7b
parameters:
int8_mask: true
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/NeuralKuke-4-All-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```