|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- Kukedlc/Neural-Cosmic-7B-slerp |
|
- Kukedlc/NeuralLogic-7B-V |
|
- Kukedlc/SuperCombo |
|
base_model: |
|
- Kukedlc/Neural-Cosmic-7B-slerp |
|
- Kukedlc/NeuralLogic-7B-V |
|
- Kukedlc/SuperCombo |
|
license: apache-2.0 |
|
--- |
|
|
|
## Note: The merge method is ties, not slerp. |
|
|
|
# Neural-Cosmic-Boy-7B-slerp |
|
|
|
![Neural Cosmic Boy - 7 billons params](https://raw.githubusercontent.com/kukedlc87/imagenes/main/DALL%C2%B7E%202024-02-17%2020.28.38%20-%20Visualize%20a%20human%20face%20composed%20entirely%20of%20topographic%20lines%2C%20similar%20to%20those%20found%20on%20a%20mountain%20map.%20This%20artistic%20representation%20uses%20only%20lines%20.webp) |
|
Neural-Cosmic-Boy-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [Kukedlc/Neural-Cosmic-7B-slerp](https://huggingface.co./Kukedlc/Neural-Cosmic-7B-slerp) |
|
* [Kukedlc/NeuralLogic-7B-V](https://huggingface.co./Kukedlc/NeuralLogic-7B-V) |
|
* [Kukedlc/SuperCombo](https://huggingface.co./Kukedlc/SuperCombo) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: Kukedlc/Neural-Cosmic-7B-slerp |
|
parameters: |
|
density: [1, 0.7, 0.1] # density gradient |
|
weight: 1.0 |
|
- model: Kukedlc/NeuralLogic-7B-V |
|
parameters: |
|
density: 0.5 |
|
weight: [0, 0.3, 0.7, 1] # weight gradient |
|
- model: Kukedlc/SuperCombo |
|
parameters: |
|
density: 0.33 |
|
weight: |
|
- filter: mlp |
|
value: 0.5 |
|
- value: 0 |
|
merge_method: ties |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
parameters: |
|
normalize: true |
|
int8_mask: true |
|
dtype: float16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Kukedlc/Neural-Cosmic-Boy-7B-slerp" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |