Jupiter-k-7B-slerp / README.md
Kukedlc's picture
Update README.md
a3ff700 verified
|
raw
history blame
2.94 kB
metadata
license: apache-2.0

Jupiter-k-7B-slerp ( My Favorite model! )

image/png

Jupiter-k-7B-slerp is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: Kukedlc/NeuralContamination-7B-ties
    parameters:
      density: [1, 0.7, 0.1] # density gradient
      weight: 1.0
  - model: Kukedlc/NeuralTopBench-7B-ties
    parameters:
      density: 0.5
      weight: [0, 0.3, 0.7, 1] # weight gradient
  - model: Gille/StrangeMerges_32-7B-slerp
    parameters:
      density: 0.33
      weight:
        - filter: mlp
          value: 0.5
        - value: 0
merge_method: ties
base_model: Kukedlc/NeuralMaxime-7B-slerp 
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16

πŸ’» Usage - Stream

# Requirements
!pip install -qU transformers accelerate bitsandbytes

# Imports & settings
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import warnings
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings('ignore')

# Model & Tokenizer
MODEL_NAME = "Kukedlc/Jupiter-k-7B-slerp"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:1', load_in_4bit=True)
tok = AutoTokenizer.from_pretrained(MODEL_NAME)

# Inference
prompt = "I want you to generate a theory that unites quantum mechanics with the theory of relativity and cosmic consciousness"
inputs = tok([prompt], return_tensors="pt").to('cuda')
streamer = TextStreamer(tok)

# Despite returning the usual output, the streamer will also print the generated text to stdout.
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=512, do_sample=True, num_beams=1, top_p=0.9, temperature=0.7)

πŸ’» Usage - Clasic

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Kukedlc/Jupiter-k-7B-slerp"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])