|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: Bert-NER |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: ner |
|
type: ner |
|
config: indian_names |
|
split: test |
|
args: indian_names |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9752319346327347 |
|
- name: Recall |
|
type: recall |
|
value: 0.9923783128356141 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9837304142519855 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9730393535444438 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Bert-NER |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1205 |
|
- Precision: 0.9752 |
|
- Recall: 0.9924 |
|
- F1: 0.9837 |
|
- Accuracy: 0.9730 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0825 | 1.0 | 501 | 0.1031 | 0.9600 | 0.9917 | 0.9756 | 0.9770 | |
|
| 0.0337 | 2.0 | 1002 | 0.1491 | 0.9615 | 0.9942 | 0.9776 | 0.9648 | |
|
| 0.0285 | 3.0 | 1503 | 0.1169 | 0.9754 | 0.9913 | 0.9833 | 0.9723 | |
|
| 0.0249 | 4.0 | 2004 | 0.1054 | 0.9724 | 0.9921 | 0.9821 | 0.9783 | |
|
| 0.0232 | 5.0 | 2505 | 0.1205 | 0.9752 | 0.9924 | 0.9837 | 0.9730 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|