Bert-NER / README.md
Kriyans's picture
update model card README.md
d8bcae7
|
raw
history blame
2.29 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_wnut_model
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ner
type: ner
config: indian_names
split: test
args: indian_names
metrics:
- name: Precision
type: precision
value: 1.0
- name: Recall
type: recall
value: 1.0
- name: F1
type: f1
value: 1.0
- name: Accuracy
type: accuracy
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_wnut_model
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co./bert-base-cased) on the ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 344 | 0.0003 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 0.031 | 2.0 | 688 | 0.0002 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 0.005 | 3.0 | 1032 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.005 | 4.0 | 1376 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.001 | 5.0 | 1720 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3