metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- indian_names
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_wnut_model
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: indian_names
type: indian_names
config: indian_names
split: train
args: indian_names
metrics:
- name: Precision
type: precision
value: 0.980007544322897
- name: Recall
type: recall
value: 0.979145728643216
- name: F1
type: f1
value: 0.9795764469301829
- name: Accuracy
type: accuracy
value: 0.9962591162591162
my_awesome_wnut_model
This model is a fine-tuned version of distilbert-base-uncased on the indian_names dataset. It achieves the following results on the evaluation set:
- Loss: 0.0148
- Precision: 0.9800
- Recall: 0.9791
- F1: 0.9796
- Accuracy: 0.9963
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 66 | 0.1644 | 0.1903 | 0.1692 | 0.1791 | 0.8817 |
No log | 2.0 | 132 | 0.1154 | 0.9760 | 0.8181 | 0.8901 | 0.9703 |
No log | 3.0 | 198 | 0.0921 | 0.9755 | 0.9046 | 0.9387 | 0.9795 |
No log | 4.0 | 264 | 0.0586 | 0.9616 | 0.9193 | 0.9400 | 0.9849 |
No log | 5.0 | 330 | 0.0465 | 0.9588 | 0.9219 | 0.9400 | 0.9861 |
No log | 6.0 | 396 | 0.0346 | 0.9359 | 0.9460 | 0.9409 | 0.9902 |
No log | 7.0 | 462 | 0.0227 | 0.9708 | 0.9678 | 0.9693 | 0.9941 |
0.1068 | 8.0 | 528 | 0.0199 | 0.9753 | 0.9734 | 0.9743 | 0.9946 |
0.1068 | 9.0 | 594 | 0.0155 | 0.9801 | 0.9784 | 0.9793 | 0.9961 |
0.1068 | 10.0 | 660 | 0.0148 | 0.9800 | 0.9791 | 0.9796 | 0.9963 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3