File size: 1,350 Bytes
edbbaaf
 
97ebcdb
edbbaaf
 
 
83fe4a1
edbbaaf
4fea786
ee1e704
edbbaaf
 
 
 
 
4fea786
edbbaaf
97ebcdb
edbbaaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee1e704
2f2f50f
 
edbbaaf
 
 
ee1e704
edbbaaf
 
 
2f2f50f
 
ee1e704
edbbaaf
 
 
 
6fd4b09
edbbaaf
4fea786
97ebcdb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- ner
model-index:
- name: Bert-NER
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Bert-NER

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the ner dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 486  | 0.0032          | 0.9972    | 0.9978 | 0.9975 | 0.9987   |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1