lilt-en-funsd
This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.8012
- Answer: {'precision': 0.8827751196172249, 'recall': 0.9033047735618115, 'f1': 0.8929219600725952, 'number': 817}
- Header: {'precision': 0.6868686868686869, 'recall': 0.5714285714285714, 'f1': 0.6238532110091742, 'number': 119}
- Question: {'precision': 0.9034296028880866, 'recall': 0.9294336118848654, 'f1': 0.9162471395881007, 'number': 1077}
- Overall Precision: 0.8845
- Overall Recall: 0.8977
- Overall F1: 0.8910
- Overall Accuracy: 0.8001
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
0.4051 | 10.53 | 200 | 1.1192 | {'precision': 0.8408577878103838, 'recall': 0.9118727050183598, 'f1': 0.8749266001174398, 'number': 817} | {'precision': 0.44776119402985076, 'recall': 0.5042016806722689, 'f1': 0.4743083003952569, 'number': 119} | {'precision': 0.8896289248334919, 'recall': 0.8681522748375116, 'f1': 0.8787593984962405, 'number': 1077} | 0.8402 | 0.8644 | 0.8521 | 0.7879 |
0.0479 | 21.05 | 400 | 1.3335 | {'precision': 0.8625146886016452, 'recall': 0.8984088127294981, 'f1': 0.880095923261391, 'number': 817} | {'precision': 0.539568345323741, 'recall': 0.6302521008403361, 'f1': 0.5813953488372092, 'number': 119} | {'precision': 0.8969359331476323, 'recall': 0.8969359331476323, 'f1': 0.8969359331476322, 'number': 1077} | 0.8587 | 0.8818 | 0.8701 | 0.7952 |
0.0135 | 31.58 | 600 | 1.5420 | {'precision': 0.8301675977653631, 'recall': 0.9094247246022031, 'f1': 0.8679906542056074, 'number': 817} | {'precision': 0.6082474226804123, 'recall': 0.4957983193277311, 'f1': 0.5462962962962963, 'number': 119} | {'precision': 0.8853333333333333, 'recall': 0.924791086350975, 'f1': 0.9046321525885559, 'number': 1077} | 0.8493 | 0.8932 | 0.8707 | 0.7890 |
0.0068 | 42.11 | 800 | 1.6315 | {'precision': 0.8870967741935484, 'recall': 0.8751529987760098, 'f1': 0.8810844115834873, 'number': 817} | {'precision': 0.6521739130434783, 'recall': 0.6302521008403361, 'f1': 0.641025641025641, 'number': 119} | {'precision': 0.9054307116104869, 'recall': 0.8978644382544104, 'f1': 0.9016317016317017, 'number': 1077} | 0.8834 | 0.8728 | 0.8781 | 0.8044 |
0.0047 | 52.63 | 1000 | 1.6176 | {'precision': 0.8813559322033898, 'recall': 0.8910648714810282, 'f1': 0.8861838101034694, 'number': 817} | {'precision': 0.6764705882352942, 'recall': 0.5798319327731093, 'f1': 0.6244343891402716, 'number': 119} | {'precision': 0.8922528940338379, 'recall': 0.9303621169916435, 'f1': 0.9109090909090909, 'number': 1077} | 0.8771 | 0.8937 | 0.8853 | 0.7979 |
0.002 | 63.16 | 1200 | 1.9150 | {'precision': 0.8640552995391705, 'recall': 0.9179926560587516, 'f1': 0.8902077151335311, 'number': 817} | {'precision': 0.6330275229357798, 'recall': 0.5798319327731093, 'f1': 0.6052631578947367, 'number': 119} | {'precision': 0.9049815498154982, 'recall': 0.9108635097493036, 'f1': 0.907913003239241, 'number': 1077} | 0.8734 | 0.8942 | 0.8837 | 0.7874 |
0.0015 | 73.68 | 1400 | 1.7303 | {'precision': 0.8863361547762999, 'recall': 0.8971848225214198, 'f1': 0.8917274939172749, 'number': 817} | {'precision': 0.7319587628865979, 'recall': 0.5966386554621849, 'f1': 0.6574074074074073, 'number': 119} | {'precision': 0.8903985507246377, 'recall': 0.9127205199628597, 'f1': 0.901421366345713, 'number': 1077} | 0.8812 | 0.8877 | 0.8844 | 0.8015 |
0.0011 | 84.21 | 1600 | 1.7743 | {'precision': 0.8763376932223543, 'recall': 0.9020807833537332, 'f1': 0.8890229191797346, 'number': 817} | {'precision': 0.6147540983606558, 'recall': 0.6302521008403361, 'f1': 0.6224066390041495, 'number': 119} | {'precision': 0.9009259259259259, 'recall': 0.903435468895079, 'f1': 0.9021789522484933, 'number': 1077} | 0.8737 | 0.8867 | 0.8802 | 0.7948 |
0.001 | 94.74 | 1800 | 1.8012 | {'precision': 0.8827751196172249, 'recall': 0.9033047735618115, 'f1': 0.8929219600725952, 'number': 817} | {'precision': 0.6868686868686869, 'recall': 0.5714285714285714, 'f1': 0.6238532110091742, 'number': 119} | {'precision': 0.9034296028880866, 'recall': 0.9294336118848654, 'f1': 0.9162471395881007, 'number': 1077} | 0.8845 | 0.8977 | 0.8910 | 0.8001 |
0.0005 | 105.26 | 2000 | 1.7293 | {'precision': 0.8468571428571429, 'recall': 0.9069767441860465, 'f1': 0.875886524822695, 'number': 817} | {'precision': 0.696078431372549, 'recall': 0.5966386554621849, 'f1': 0.6425339366515838, 'number': 119} | {'precision': 0.9037580201649863, 'recall': 0.9155060352831941, 'f1': 0.9095940959409595, 'number': 1077} | 0.8694 | 0.8932 | 0.8812 | 0.8066 |
0.0003 | 115.79 | 2200 | 1.7737 | {'precision': 0.8584579976985041, 'recall': 0.9130966952264382, 'f1': 0.8849347568208777, 'number': 817} | {'precision': 0.6979166666666666, 'recall': 0.5630252100840336, 'f1': 0.6232558139534883, 'number': 119} | {'precision': 0.8930817610062893, 'recall': 0.9229340761374187, 'f1': 0.9077625570776255, 'number': 1077} | 0.8696 | 0.8977 | 0.8834 | 0.8076 |
0.0002 | 126.32 | 2400 | 1.7984 | {'precision': 0.8419864559819413, 'recall': 0.9130966952264382, 'f1': 0.8761009982384028, 'number': 817} | {'precision': 0.7040816326530612, 'recall': 0.5798319327731093, 'f1': 0.6359447004608296, 'number': 119} | {'precision': 0.9012797074954296, 'recall': 0.9155060352831941, 'f1': 0.9083371718102257, 'number': 1077} | 0.8667 | 0.8947 | 0.8805 | 0.8078 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for KrisKrit/lilt-en-funsd
Base model
SCUT-DLVCLab/lilt-roberta-en-base