ft-raft-lora
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.1402
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1399
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8153 | 0.8696 | 20 | 1.6376 |
1.3735 | 1.7391 | 40 | 1.1018 |
0.7809 | 2.6087 | 60 | 0.4950 |
0.3055 | 3.4783 | 80 | 0.2025 |
0.1425 | 4.3478 | 100 | 0.1491 |
0.105 | 5.2174 | 120 | 0.1422 |
0.0755 | 6.0870 | 140 | 0.1377 |
0.0602 | 6.9565 | 160 | 0.1402 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 5
Model tree for Kota123/ft-raft-lora
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct