|
--- |
|
base_model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
datasets: |
|
- airesearch/WangchanThaiInstruct |
|
--- |
|
|
|
# Dataset |
|
|
|
This model finetune on [airesearch/WangchanThaiInstruct](https://huggingface.co./datasets/airesearch/WangchanThaiInstruct) |
|
|
|
`23 sep 2024` |
|
|
|
Training details: |
|
|
|
- epochs: 1 |
|
- learning rate: 2e-4 |
|
- learning rate scheduler type: linear |
|
- Warmup ratio: 0.3 |
|
- cutoff len (i.e. context length): 2048 |
|
- global batch size: 8 |
|
- fine-tuning type: qlora |
|
- optimizer: adamw_8bit |
|
|
|
ps. 12 Hours from T4 Kaggle |
|
|
|
|
|
# Usage |
|
|
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_id = "Konthee/Llama-3.1-8B-ThaiInstruct" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, torch_dtype="auto", device_map="auto" |
|
) |
|
|
|
messages = [ |
|
{"role": "user", "content": "สอนภาษาไทยหน่อย"}, |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, add_generation_prompt=True, return_tensors="pt" |
|
).to(model.device) |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=4096, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
) |
|
response = outputs[0][input_ids.shape[-1]:] |
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
``` |
|
|
|
|
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** Konthee |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |