roberta-base-thai-syllable-upos

Model Description

This is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from roberta-base-thai-syllable. Every word is tagged by UPOS (Universal Part-Of-Speech).

How to Use

import torch
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable-upos")
s="หลายหัวดีกว่าหัวเดียว"
t=tokenizer.tokenize(s)
p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]]
print(list(zip(t,p)))

or

import esupar
nlp=esupar.load("KoichiYasuoka/roberta-base-thai-syllable-upos")
print(nlp("หลายหัวดีกว่าหัวเดียว"))

See Also

esupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models

Downloads last month
126
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for KoichiYasuoka/roberta-base-thai-syllable-upos

Finetuned
(1)
this model
Finetunes
1 model

Dataset used to train KoichiYasuoka/roberta-base-thai-syllable-upos