KoichiYasuoka's picture
Reference
a08b900
|
raw
history blame
1.25 kB
---
language:
- "ja"
tags:
- "japanese"
- "masked-lm"
- "modernbert"
datasets:
- "globis-university/aozorabunko-clean"
license: "apache-2.0"
pipeline_tag: "fill-mask"
mask_token: "[MASK]"
widget:
- text: "日本に着いたら[MASK]を訪ねなさい。"
---
# modernbert-large-japanese-aozora
## Model Description
This is a ModernBERT model pre-trained on 青空文庫 texts. NVIDIA A100-SXM4-40GB×8 took 10 hours 5 minutes for training. You can fine-tune `modernbert-large-japanese-aozora` for downstream tasks, such as [POS-tagging](https://huggingface.co./KoichiYasuoka/modernbert-large-japanese-aozora-upos), [dependency-parsing](https://huggingface.co./KoichiYasuoka/modernbert-large-japanese-aozora-ud-square), and so on.
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForMaskedLM
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/modernbert-large-japanese-aozora")
model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/modernbert-large-japanese-aozora",trust_remote_code=True)
```
### Reference
安岡孝一: 青空文庫ModernBERTモデルによる国語研長単位係り受け解析, 情報処理学会研究報告, Vol.2025-CH-137『人文科学とコンピュータ』, No.10 (2025年2月8日), pp.1-7.