How to use

from transformers import T5Tokenizer, T5ForConditionalGeneration
model_name = "KhantKyaw/T5-small_new_chatbot"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
def generate_response(input_text):
    input_ids = tokenizer.encode(input_text, return_tensors='pt')
    outputs = model.generate(input_ids,
                             min_length=5,
                             max_length=300,
                             do_sample=True, num_beams=5, no_repeat_ngram_size=2)
    generated_text = tokenizer.decode(
        outputs[0], skip_special_tokens=True)
    return generated_text
generate_response("how to be healthy?")

Contributors: Team Machina: Khant Kyaw, Hein Min Htun, Htet Myat Noe Aung, Thant Zin Oo

Downloads last month
63
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using KhantKyaw/T5-small_new_chatbot 2