How to use
from transformers import T5Tokenizer, T5ForConditionalGeneration
model_name = "KhantKyaw/T5-small_new_chatbot"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
def generate_response(input_text):
input_ids = tokenizer.encode(input_text, return_tensors='pt')
outputs = model.generate(input_ids,
min_length=5,
max_length=300,
do_sample=True, num_beams=5, no_repeat_ngram_size=2)
generated_text = tokenizer.decode(
outputs[0], skip_special_tokens=True)
return generated_text
generate_response("how to be healthy?")
Contributors: Team Machina: Khant Kyaw, Hein Min Htun, Htet Myat Noe Aung, Thant Zin Oo
- Downloads last month
- 63
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.