finetuned_paligemma_beans_vqa_final

This model is a fine-tuned version of google/paligemma-3b-pt-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0687

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
0.2394 0.1530 500 0.2471
0.1979 0.3060 1000 0.1885
0.1526 0.4590 1500 0.1759
0.1458 0.6119 2000 0.1574
0.1337 0.7649 2500 0.1320
0.1381 0.9179 3000 0.1273
0.1119 1.0707 3500 0.1276
0.0939 1.2237 4000 0.1121
0.1133 1.3767 4500 0.0998
0.0974 1.5299 5000 0.0964
0.0889 1.6829 5500 0.0930
0.0808 1.8359 6000 0.0889
0.0743 1.9889 6500 0.0822
0.0746 2.1420 7000 0.0818
0.0686 2.2950 7500 0.0783
0.0734 2.4479 8000 0.0772
0.0702 2.6009 8500 0.0772
0.0661 2.7539 9000 0.0722
0.0603 2.9069 9500 0.0706
0.0505 3.0597 10000 0.0718
0.0467 3.2127 10500 0.0718
0.0469 3.3656 11000 0.0703
0.0473 3.5186 11500 0.0689
0.0389 3.6716 12000 0.0676
0.0452 3.8246 12500 0.0680
0.0487 3.9776 13000 0.0632
0.0324 4.1303 13500 0.0690
0.0259 4.2833 14000 0.0724
0.0386 4.4363 14500 0.0687

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
50
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for KettaP/finetuned_paligemma_beans_vqa_final

Adapter
(173)
this model